論文の概要: Deep Feature Embedding for Tabular Data
- arxiv url: http://arxiv.org/abs/2408.17162v1
- Date: Fri, 30 Aug 2024 10:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:48:34.347876
- Title: Deep Feature Embedding for Tabular Data
- Title(参考訳): タブラルデータのためのディープ・フィーチャー・埋め込み
- Authors: Yuqian Wu, Hengyi Luo, Raymond S. T. Lee,
- Abstract要約: 本稿では,軽量なディープニューラルネットワークを利用した新しいディープ埋め込みフレームワークを提案する。
数値的特徴量には、2段階の特徴展開と深層変換法が用いられる。
実世界のデータセットを用いて実験を行い、性能評価を行った。
- 参考スコア(独自算出の注目度): 2.1301560294088318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tabular data learning has extensive applications in deep learning but its existing embedding techniques are limited in numerical and categorical features such as the inability to capture complex relationships and engineering. This paper proposes a novel deep embedding framework with leverages lightweight deep neural networks to generate effective feature embeddings for tabular data in machine learning research. For numerical features, a two-step feature expansion and deep transformation technique is used to capture copious semantic information. For categorical features, a unique identification vector for each entity is referred by a compact lookup table with a parameterized deep embedding function to uniform the embedding size dimensions, and transformed into a embedding vector using deep neural network. Experiments are conducted on real-world datasets for performance evaluation.
- Abstract(参考訳): タブラルデータ学習は、ディープラーニングに広く応用されているが、既存の埋め込み技術は、複雑な関係やエンジニアリングを捉えることができないなど、数値的および分類学的特徴に限られている。
本稿では、軽量なディープニューラルネットワークを活用して、機械学習研究における表層データに対する効果的な特徴埋め込みを生成する新しいディープ埋め込みフレームワークを提案する。
数値的特徴量には、2段階の特徴展開と深層変換法が用いられる。
分類的特徴に対して、各エンティティのユニークな識別ベクトルは、パラメータ化された深層埋め込み関数を備えたコンパクトなルックアップテーブルによって参照され、埋め込みサイズ寸法を均一化し、ディープニューラルネットワークを用いて埋め込みベクトルに変換する。
実世界のデータセットを用いて実験を行い、性能評価を行った。
関連論文リスト
- A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
特徴埋め込み空間のトポロジがベッチ数を介してよく訓練されたディープニューラルネットワーク(DNN)の層を通過するとき、どのように変化するかを検討する。
深度が増加するにつれて、トポロジカルに複雑なデータセットが単純なデータセットに変換され、ベッチ数はその最小値に達することが示される。
論文 参考訳(メタデータ) (2023-11-08T10:45:12Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
深層線形ネットワークの各層は、幾何速度でクラス内特徴を徐々に圧縮し、線形速度でクラス間特徴を識別することを示す。
これは、ディープ線形ネットワークの階層的表現における特徴進化の最初の定量的評価である。
論文 参考訳(メタデータ) (2023-11-06T09:00:38Z) - Multiclass classification for multidimensional functional data through
deep neural networks [0.22843885788439797]
革新的なデータマイニング分類ツールとして,新しい機能深層ニューラルネットワーク(mfDNN)を導入する。
線形単位(ReLU)アクティベーション機能を持つ疎いディープニューラルネットワークアーキテクチャを考察し,マルチクラス分類設定におけるクロスエントロピー損失を最小化する。
シミュレーションデータと異なるアプリケーションドメインのベンチマークデータセットにおけるmfDNNの性能を示す。
論文 参考訳(メタデータ) (2023-05-22T16:56:01Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - DANets: Deep Abstract Networks for Tabular Data Classification and
Regression [9.295859461145783]
Abstract Layer (AbstLay)は、相関的な入力機能を明示的にグループ化し、セマンティクスの抽象化のための高レベルな機能を生成する。
表形式のデータ分類と回帰のためのDeep Abstract Networks (DANets) のファミリー。
論文 参考訳(メタデータ) (2021-12-06T12:15:28Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
ニューラルネットワークの学習性はそのサイズと直接関連していることを示す。
入力データとニューラルネットワークのトポロジ的幾何学的複雑さを測定するためにベッチ数を用いる。
実世界のデータセットMNISTで実験を行い、分析結果と結論を検証した。
論文 参考訳(メタデータ) (2021-09-03T11:45:51Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Representation Extraction and Deep Neural Recommendation for
Collaborative Filtering [9.367612782346207]
本稿では,評価行列からユーザやアイテムを抽出する新しい表現学習アルゴリズムについて検討する。
Representation eXtraction と Deep Neural NETwork (RexNet) の2つの相からなるモジュラーアルゴリズムを提案する。
RexNetは、視覚情報やテキスト情報のような構造化されていない補助データに依存しない。
論文 参考訳(メタデータ) (2020-12-09T11:15:23Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。