Accelerating the discovery of steady-states of planetary interior dynamics with machine learning
- URL: http://arxiv.org/abs/2408.17298v1
- Date: Fri, 30 Aug 2024 13:55:19 GMT
- Title: Accelerating the discovery of steady-states of planetary interior dynamics with machine learning
- Authors: Siddhant Agarwal, Nicola Tosi, Christian Hüttig, David S. Greenberg, Ali Can Bekar,
- Abstract summary: We present a concept for accelerating mantle convection simulations using machine learning.
We train a feedforward neural network on 97 simulations to predict steady-state temperature profiles.
The number of time steps required to reach steady-state is reduced by a median factor of 3.75.
- Score: 2.4608654148475235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating mantle convection often requires reaching a computationally expensive steady-state, crucial for deriving scaling laws for thermal and dynamical flow properties and benchmarking numerical solutions. The strong temperature dependence of the rheology of mantle rocks causes viscosity variations of several orders of magnitude, leading to a slow-evolving stagnant lid where heat conduction dominates, overlying a rapidly-evolving and strongly convecting region. Time-stepping methods, while effective for fluids with constant viscosity, are hindered by the Courant criterion, which restricts the time step based on the system's maximum velocity and grid size. Consequently, achieving steady-state requires a large number of time steps due to the disparate time scales governing the stagnant and convecting regions. We present a concept for accelerating mantle convection simulations using machine learning. We generate a dataset of 128 two-dimensional simulations with mixed basal and internal heating, and pressure- and temperature-dependent viscosity. We train a feedforward neural network on 97 simulations to predict steady-state temperature profiles. These can then be used to initialize numerical time stepping methods for different simulation parameters. Compared to typical initializations, the number of time steps required to reach steady-state is reduced by a median factor of 3.75. The benefit of this method lies in requiring very few simulations to train on, providing a solution with no prediction error as we initialize a numerical method, and posing minimal computational overhead at inference time. We demonstrate the effectiveness of our approach and discuss the potential implications for accelerated simulations for advancing mantle convection research.
Related papers
- Thermal state preparation by repeated interactions at and beyond the Lindblad limit [41.94295877935867]
We study the nature of thermalization dynamics and the associated preparation (simulation) time under the repeated interaction protocol.<n>We observe a Mpemba-like effect: Starting from a maximally mixed state, thermalization to an intermediate-temperature state takes longer than to a lower-temperature one.
arXiv Detail & Related papers (2025-06-13T18:34:49Z) - Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - Physics-based machine learning for mantle convection simulations [2.4608654148475235]
We propose a machine learning approach that predicts creeping flow velocities as a function of temperature while conserving mass.<n>A finite-volume solver then uses the predicted velocities to advect and diffuse the temperature field to the next time-step, enabling autoregressive rollout at inference.<n>Overall, our model is up to 89 times faster than the numerical solver.
arXiv Detail & Related papers (2025-05-21T21:47:43Z) - Data-Driven Optical To Thermal Inference in Pool Boiling Using Generative Adversarial Networks [1.0499611180329804]
We present a data-driven framework that infers temperature fields from geometric phase in a canonical pool boiling configuration.<n>Our results highlight the potential of deep generative models to bridge the gap between observable multiphase phenomena and underlying thermal transport.
arXiv Detail & Related papers (2025-05-01T19:26:01Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)
In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.
A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations [0.0]
This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning.
The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios.
Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure.
arXiv Detail & Related papers (2024-09-11T10:38:30Z) - Accelerating Simulation of Two-Phase Flows with Neural PDE Surrogates [3.909855210960908]
We investigate and extend neural PDE solvers as a tool to aid in scaling simulations for two-phase flow problems.
We extend existing numerical methods for this problem to a more complex setting involving varying geometries of the domain.
We find that the investigated methods can accurately model the droplet dynamics with up to three orders of magnitude speed-up.
arXiv Detail & Related papers (2024-05-27T15:18:12Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble.
We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making.
arXiv Detail & Related papers (2023-06-23T07:53:09Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Uncertainty estimation for molecular dynamics and sampling [0.0]
Machine learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations.
It is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during the training of the model.
We present examples covering different types of structural and thermodynamic properties, and systems as diverse as water and liquid gallium.
arXiv Detail & Related papers (2020-11-10T00:07:50Z) - ML-LBM: Machine Learning Aided Flow Simulation in Porous Media [0.0]
Direct simulation of fluid flow in porous media requires significant computational resources to solve within reasonable timeframes.
An integrated method combining predictions of fluid flow with direct flow simulation is outlined.
Deep Learning techniques based on Convolutional Neural Networks (CNNs) are shown to give an accurate estimate of the steady state velocity fields.
arXiv Detail & Related papers (2020-04-22T01:55:59Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.