論文の概要: Fair Best Arm Identification with Fixed Confidence
- arxiv url: http://arxiv.org/abs/2408.17313v1
- Date: Fri, 30 Aug 2024 14:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:08:40.263194
- Title: Fair Best Arm Identification with Fixed Confidence
- Title(参考訳): 固定信頼度の高い腕の特定
- Authors: Alessio Russo, Filippo Vannella,
- Abstract要約: フェアネス制約下でのベストアーム識別(BAI)のための新しいフレームワークを提案する。
本稿では,F-TaSを提案する。
数値計算の結果,F-TaSは試料の複雑さを最小限に抑えつつ,フェアネス違反を抑える効果を示した。
- 参考スコア(独自算出の注目度): 4.6193503399184275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a novel framework for Best Arm Identification (BAI) under fairness constraints, a setting that we refer to as \textit{F-BAI} (fair BAI). Unlike traditional BAI, which solely focuses on identifying the optimal arm with minimal sample complexity, F-BAI also includes a set of fairness constraints. These constraints impose a lower limit on the selection rate of each arm and can be either model-agnostic or model-dependent. For this setting, we establish an instance-specific sample complexity lower bound and analyze the \textit{price of fairness}, quantifying how fairness impacts sample complexity. Based on the sample complexity lower bound, we propose F-TaS, an algorithm provably matching the sample complexity lower bound, while ensuring that the fairness constraints are satisfied. Numerical results, conducted using both a synthetic model and a practical wireless scheduling application, show the efficiency of F-TaS in minimizing the sample complexity while achieving low fairness violations.
- Abstract(参考訳): 本研究では,フェアネス制約下でのベストアーム識別(BAI)の枠組みについて述べる。
従来のBAIとは違い、F-BAIは最小限のサンプルの複雑さで最適な腕を識別することだけに重点を置いているが、F-BAIにはフェアネスの制約も含まれている。
これらの制約は各アームの選択率に低い制限を課し、モデルに依存しないかモデルに依存しない。
この設定のために、インスタンス固有のサンプル複雑性を低いバウンドに設定し、サンプル複雑性にどのように公正さが影響するかを定量化するために、 \textit{price of Fairness} を解析する。
F-TaSというアルゴリズムは,サンプルの複雑性の低いバウンドに適合し,フェアネスの制約が満たされることを保証する。
合成モデルと実用的な無線スケジューリングアプリケーションの両方を用いて実施した数値計算結果から,F-TaSの有効性を示した。
関連論文リスト
- Controllable Generation via Locally Constrained Resampling [77.48624621592523]
本研究では, ベイズ条件付けを行い, 制約条件下でサンプルを描画する, トラクタブルな確率的手法を提案する。
提案手法はシーケンス全体を考慮し,現行のグリード法よりも大域的に最適に制約された生成を導出する。
提案手法は, 有害な世代からモデル出力を分離し, 脱毒化に対する同様のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-17T00:49:53Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Optimal Multi-Distribution Learning [88.3008613028333]
マルチディストリビューション学習は、$k$の異なるデータ分散における最悪のリスクを最小限に抑える共有モデルを学ぶことを目指している。
本稿では, (d+k)/varepsilon2の順に, サンプルの複雑さを伴って, ヴァレプシロン最適ランダム化仮説を導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T16:06:29Z) - ConstraintMatch for Semi-constrained Clustering [32.92933231199262]
制約クラスタリングにより、ペアの制約のみを使用して分類モデルのトレーニングが可能になる。
そこで本稿では,制約の少ない制約セットとともに大量のテキスト非制約データを利用できる半教師付きコンテキストを提案し,制約のないデータを活用するためのtextitConstraintMatchを提案する。
論文 参考訳(メタデータ) (2023-11-26T19:31:52Z) - Deep Boosting Multi-Modal Ensemble Face Recognition with Sample-Level
Weighting [11.39204323420108]
深層畳み込みニューラルネットワークは顔認識において顕著な成功を収めた。
現在のトレーニングベンチマークは、不均衡な品質分布を示している。
これは、訓練中に不足しているため、ハードサンプルの一般化に問題を引き起こす。
有名なAdaBoostにインスパイアされた本研究では、FR損失に異なるサンプルの重要性を組み込むためのサンプルレベルの重み付け手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T01:44:54Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
条件生成モデルは、トレーニングデータセットから急激な相関を継承することが多い。
これは別の潜在属性に対して不均衡なラベル条件分布をもたらす。
この問題を緩和するための一般的な2段階戦略を提案する。
論文 参考訳(メタデータ) (2022-12-05T08:09:33Z) - A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability [57.502573663108535]
本研究では、半教師付きPACモデルにおいて、時間攻撃をテストするために、逆向きに頑健な予測器を学習する問題について検討する。
最悪の分布自由モデルにおいても,半教師付き頑健な学習には大きなメリットがあることが示されている。
論文 参考訳(メタデータ) (2022-02-11T03:01:45Z) - Best Arm Identification in Spectral Bandits [0.0]
BAI(Best Arm Identification)は、パラメータチューニングから臨床試験まで、多くの応用において重要な課題である。
グラフの滑らか度制約を伴う帯域モデルにおいて,信頼度を固定したベストアーム識別について検討する。
論文 参考訳(メタデータ) (2020-05-20T04:12:04Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。