論文の概要: FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
- arxiv url: http://arxiv.org/abs/2503.13537v1
- Date: Sat, 15 Mar 2025 19:57:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:17.395373
- Title: FedTilt: Towards Multi-Level Fairness-Preserving and Robust Federated Learning
- Title(参考訳): FedTilt: マルチレベルフェアネス保存とロバストなフェデレーションラーニングを目指して
- Authors: Binghui Zhang, Luis Mares De La Cruz, Binghui Wang,
- Abstract要約: textttFedTiltは、複数レベルの公正性を保ち、外れ値に対して堅牢な新しいFLである。
傾き値のチューニングが2段階の公平性を実現し、持続的なアウトレーラを緩和できることを示す。
- 参考スコア(独自算出の注目度): 12.713572267830658
- License:
- Abstract: Federated Learning (FL) is an emerging decentralized learning paradigm that can partly address the privacy concern that cannot be handled by traditional centralized and distributed learning. Further, to make FL practical, it is also necessary to consider constraints such as fairness and robustness. However, existing robust FL methods often produce unfair models, and existing fair FL methods only consider one-level (client) fairness and are not robust to persistent outliers (i.e., injected outliers into each training round) that are common in real-world FL settings. We propose \texttt{FedTilt}, a novel FL that can preserve multi-level fairness and be robust to outliers. In particular, we consider two common levels of fairness, i.e., \emph{client fairness} -- uniformity of performance across clients, and \emph{client data fairness} -- uniformity of performance across different classes of data within a client. \texttt{FedTilt} is inspired by the recently proposed tilted empirical risk minimization, which introduces tilt hyperparameters that can be flexibly tuned. Theoretically, we show how tuning tilt values can achieve the two-level fairness and mitigate the persistent outliers, and derive the convergence condition of \texttt{FedTilt} as well. Empirically, our evaluation results on a suite of realistic federated datasets in diverse settings show the effectiveness and flexibility of the \texttt{FedTilt} framework and the superiority to the state-of-the-arts.
- Abstract(参考訳): Federated Learning(FL)は、従来の集中学習や分散学習では扱えないプライバシー問題に部分的に対処できる、新たな分散学習パラダイムである。
さらに、FLを実用化するためには、公正性やロバスト性といった制約も考慮する必要がある。
しかし、既存の堅牢なFLメソッドは不公平なモデルを生成することが多く、既存の公正なFLメソッドは1レベル(クライアント)の公平さしか考慮せず、現実のFL設定で共通する永続的なアウトリー(すなわち、各トレーニングラウンドにアウトリーを注入する)に対して堅牢ではない。
マルチレベルフェアネスを保ち、外れ値に対して堅牢な新しいFLである「texttt{FedTilt}」を提案する。
特に、クライアント間でのパフォーマンスの均一性である \emph{client fairness} と、クライアント内のさまざまなクラスのデータのパフォーマンスの均一性を考える。
texttt{FedTilt} は、最近提案された傾いた経験的リスク最小化に触発され、柔軟に調整できる傾いたハイパーパラメーターが導入された。
理論的には、傾き値のチューニングが2段階の公平性を実現し、持続的なアウトリーチを緩和し、また \texttt{FedTilt} の収束条件も導出できることを示す。
実験により, 各種設定における現実的なフェデレーションデータセットの集合に対する評価結果は, texttt{FedTilt} フレームワークの有効性と柔軟性, 最先端技術に対する優位性を示している。
関連論文リスト
- A Post-Processing-Based Fair Federated Learning Framework [8.978878439498365]
Federated Learning(FL)は、中央サーバでローカルデータセットをプールすることなく、分散パーティ間で協調的なモデルトレーニングを可能にする。
FLシステムにおけるグループフェアネスを改善するために、単純で直感的な後処理ベースのフレームワークを定義し、実証的に分析する。
我々の研究は、このフレームワークがFLにおける公正性の実装を単純化するだけでなく、精度の低下や精度の向上を最小限に抑えながら、大幅な公正性の向上をもたらすことを示している。
論文 参考訳(メタデータ) (2025-01-25T20:05:27Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning [2.8304839563562436]
公平さとプライバシの原則を同時に遵守するマシンラーニングモデルのトレーニングとデプロイは、大きな課題となる。
本稿では,FLシナリオにおける実用性,プライバシ,公正性のバランスを探究する上で有効な,高レベルのパラメータ化アプローチであるPUFFLEを紹介する。
PUFFLEは多様なデータセット,モデル,データ分布に対して有効であり,モデルの不公平性を75%まで低減し,最悪のシナリオでは有効性を最大17%削減できることを示す。
論文 参考訳(メタデータ) (2024-07-21T17:22:18Z) - Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
フェデレートラーニング(FL)では、クライアントは完全なモデルをトレーニングしたり、メモリ空間に保持することができない弱いデバイスを持っているかもしれない。
我々は、すべての利用可能なクライアントが分散トレーニングに参加することを可能にする、一般的なFLフレームワークであるEnbracingFLを提案する。
実験により,FL の導入は,すべてのクライアントが強力であるように常に高い精度を達成し,最先端の幅削減手法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-21T13:19:29Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Fairness-aware Federated Minimax Optimization with Convergence Guarantee [10.727328530242461]
フェデレートラーニング(FL)はそのプライバシー保護機能のためにかなりの注目を集めている。
ユーザデータ管理の自由の欠如は、モデルが人種や性別などのセンシティブな要因に偏っている、グループフェアネスの問題につながる可能性がある。
本稿では,FLにおけるグループフェアネス問題に明示的に対処するために,拡張ラグランジアン法(FFALM)を用いたフェアフェデレーション平均化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-10T08:45:58Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
属性は、クライアント間の一貫した最適化方向から、現在の連邦学習(FL)フレームワークを歪めます。
本稿では,ドメイン固有属性とクロス不変属性を2つの補足枝に分離するために,非絡み付きフェデレーション学習(DFL)を提案する。
実験により、DFLはSOTA FL法と比較して高い性能、より良い解釈可能性、より高速な収束率でFLを促進することが確認された。
論文 参考訳(メタデータ) (2022-06-14T13:12:12Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するためのゲーム理論のフレームワークであるFL Gamesを提案する。
論文 参考訳(メタデータ) (2022-05-23T07:51:45Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。