Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method
- URL: http://arxiv.org/abs/2408.17339v1
- Date: Fri, 30 Aug 2024 15:06:45 GMT
- Title: Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method
- Authors: Yuji Lin, Xianqiang Lyu, Junhui Hou, Qian Zhao, Deyu Meng,
- Abstract summary: 4-D light fields (LFs) enhance underwater imaging plagued by light absorption, scattering, and other challenges.
We propose a progressive framework for underwater 4-D LF image enhancement and depth estimation.
We construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods.
- Score: 77.80712860663886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we delve into the realm of 4-D light fields (LFs) to enhance underwater imaging plagued by light absorption, scattering, and other challenges. Contrasting with conventional 2-D RGB imaging, 4-D LF imaging excels in capturing scenes from multiple perspectives, thereby indirectly embedding geometric information. This intrinsic property is anticipated to effectively address the challenges associated with underwater imaging. By leveraging both explicit and implicit depth cues present in 4-D LF images, we propose a progressive, mutually reinforcing framework for underwater 4-D LF image enhancement and depth estimation. Specifically, our framework explicitly utilizes estimated depth information alongside implicit depth-related dynamic convolutional kernels to modulate output features. The entire framework decomposes this complex task, iteratively optimizing the enhanced image and depth information to progressively achieve optimal enhancement results. More importantly, we construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods, comprising 75 underwater scenes and 3675 high-resolution 2K pairs. To craft vibrant and varied underwater scenes, we build underwater environments with various objects and adopt several types of degradation. Through extensive experimentation, we showcase the potential and superiority of 4-D LF-based underwater imaging vis-a-vis traditional 2-D RGB-based approaches. Moreover, our method effectively corrects color bias and achieves state-of-the-art performance. The dataset and code will be publicly available at https://github.com/linlos1234/LFUIE.
Related papers
- Towards Single-Lens Controllable Depth-of-Field Imaging via All-in-Focus Aberration Correction and Monocular Depth Estimation [19.312034704019634]
Controllable Depth-of-Field (DoF) imaging commonly produces amazing visual effects based on heavy and expensive high-end lenses.
This work centers around two major limitations of Minimalist Optical Systems (MOS), for achieving single-lens controllable DoF imaging via computational methods.
A Depth-aware Controllable DoF Imaging (DCDI) framework is proposed equipped with All-in-Focus (AiF) aberration correction and monocular depth estimation.
With the predicted depth map, recovered image, and depth-aware PSF map inferred by Omni-Lens-Field, single-lens controllable DoF imaging is
arXiv Detail & Related papers (2024-09-15T14:52:16Z) - WaterMono: Teacher-Guided Anomaly Masking and Enhancement Boosting for Robust Underwater Self-Supervised Monocular Depth Estimation [4.909989222186828]
We propose WaterMono, a novel framework for depth estimation and image enhancement.
It incorporates the following key measures: (1) We present a Teacher-Guided Anomaly Mask to identify dynamic regions within the images; (2) We employ depth information combined with the Underwater Image Formation Model to generate enhanced images, which in turn contribute to the depth estimation task; and (3) We utilize a rotated distillation strategy to enhance the model's rotational robustness.
arXiv Detail & Related papers (2024-06-19T08:49:45Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Atlantis: Enabling Underwater Depth Estimation with Stable Diffusion [30.122666238416716]
We propose a novel pipeline for generating underwater images using accurate terrestrial depth data.
This approach facilitates the training of supervised models for underwater depth estimation.
We introduce a unique Depth2Underwater ControlNet, trained on specially prepared Underwater, Depth, Text data triplets.
arXiv Detail & Related papers (2023-12-19T08:56:33Z) - AGG-Net: Attention Guided Gated-convolutional Network for Depth Image
Completion [1.8820731605557168]
We propose a new model for depth image completion based on the Attention Guided Gated-convolutional Network (AGG-Net)
In the encoding stage, an Attention Guided Gated-Convolution (AG-GConv) module is proposed to realize the fusion of depth and color features at different scales.
In the decoding stage, an Attention Guided Skip Connection (AG-SC) module is presented to avoid introducing too many depth-irrelevant features to the reconstruction.
arXiv Detail & Related papers (2023-09-04T14:16:08Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Probabilistic-based Feature Embedding of 4-D Light Fields for
Compressive Imaging and Denoising [62.347491141163225]
4-D light field (LF) poses great challenges in achieving efficient and effective feature embedding.
We propose a probabilistic-based feature embedding (PFE), which learns a feature embedding architecture by assembling various low-dimensional convolution patterns.
Our experiments demonstrate the significant superiority of our methods on both real-world and synthetic 4-D LF images.
arXiv Detail & Related papers (2023-06-15T03:46:40Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
We study the formation of the DP pair which links the blur and the depth information.
We propose an end-to-end DDDNet (DP-based Depth and De Network) to jointly estimate the depth and restore the image.
arXiv Detail & Related papers (2020-12-01T06:53:57Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.