Towards Single-Lens Controllable Depth-of-Field Imaging via All-in-Focus Aberration Correction and Monocular Depth Estimation
- URL: http://arxiv.org/abs/2409.09754v1
- Date: Sun, 15 Sep 2024 14:52:16 GMT
- Title: Towards Single-Lens Controllable Depth-of-Field Imaging via All-in-Focus Aberration Correction and Monocular Depth Estimation
- Authors: Xiaolong Qian, Qi Jiang, Yao Gao, Shaohua Gao, Zhonghua Yi, Lei Sun, Kai Wei, Haifeng Li, Kailun Yang, Kaiwei Wang, Jian Bai,
- Abstract summary: Controllable Depth-of-Field (DoF) imaging commonly produces amazing visual effects based on heavy and expensive high-end lenses.
This work centers around two major limitations of Minimalist Optical Systems (MOS), for achieving single-lens controllable DoF imaging via computational methods.
A Depth-aware Controllable DoF Imaging (DCDI) framework is proposed equipped with All-in-Focus (AiF) aberration correction and monocular depth estimation.
With the predicted depth map, recovered image, and depth-aware PSF map inferred by Omni-Lens-Field, single-lens controllable DoF imaging is
- Score: 19.312034704019634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controllable Depth-of-Field (DoF) imaging commonly produces amazing visual effects based on heavy and expensive high-end lenses. However, confronted with the increasing demand for mobile scenarios, it is desirable to achieve a lightweight solution with Minimalist Optical Systems (MOS). This work centers around two major limitations of MOS, i.e., the severe optical aberrations and uncontrollable DoF, for achieving single-lens controllable DoF imaging via computational methods. A Depth-aware Controllable DoF Imaging (DCDI) framework is proposed equipped with All-in-Focus (AiF) aberration correction and monocular depth estimation, where the recovered image and corresponding depth map are utilized to produce imaging results under diverse DoFs of any high-end lens via patch-wise convolution. To address the depth-varying optical degradation, we introduce a Depth-aware Degradation-adaptive Training (DA2T) scheme. At the dataset level, a Depth-aware Aberration MOS (DAMOS) dataset is established based on the simulation of Point Spread Functions (PSFs) under different object distances. Additionally, we design two plug-and-play depth-aware mechanisms to embed depth information into the aberration image recovery for better tackling depth-aware degradation. Furthermore, we propose a storage-efficient Omni-Lens-Field model to represent the 4D PSF library of various lenses. With the predicted depth map, recovered image, and depth-aware PSF map inferred by Omni-Lens-Field, single-lens controllable DoF imaging is achieved. Comprehensive experimental results demonstrate that the proposed framework enhances the recovery performance, and attains impressive single-lens controllable DoF imaging results, providing a seminal baseline for this field. The source code and the established dataset will be publicly available at https://github.com/XiaolongQian/DCDI.
Related papers
- Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method [77.80712860663886]
4-D light fields (LFs) enhance underwater imaging plagued by light absorption, scattering, and other challenges.
We propose a progressive framework for underwater 4-D LF image enhancement and depth estimation.
We construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods.
arXiv Detail & Related papers (2024-08-30T15:06:45Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
We propose a self-supervised framework that estimates depth purely from a sparse focal stack.
We show that our framework circumvents the needs for the depth and AIF image ground-truth, and receives superior predictions.
arXiv Detail & Related papers (2023-03-19T19:59:48Z) - Weakly-Supervised Optical Flow Estimation for Time-of-Flight [11.496094830445054]
We propose a training algorithm, which allows to supervise Optical Flow networks directly on the reconstructed depth.
We demonstrate that this approach enables the training of OF networks to align raw iToF measurements and compensate motion artifacts in the iToF depth images.
arXiv Detail & Related papers (2022-10-11T09:47:23Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
We propose a novel end-to-end learning approach for depth from diffracted rotation.
Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation.
arXiv Detail & Related papers (2022-04-14T16:14:37Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - A learning-based view extrapolation method for axial super-resolution [52.748944517480155]
Axial light field resolution refers to the ability to distinguish features at different depths by refocusing.
We propose a learning-based method to extrapolate novel views from axial volumes of sheared epipolar plane images.
arXiv Detail & Related papers (2021-03-11T07:22:13Z) - Learning Wavefront Coding for Extended Depth of Field Imaging [4.199844472131922]
Extended depth of field (EDoF) imaging is a challenging ill-posed problem.
We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element.
We demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging.
arXiv Detail & Related papers (2019-12-31T17:00:09Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.