論文の概要: SelectTTS: Synthesizing Anyone's Voice via Discrete Unit-Based Frame Selection
- arxiv url: http://arxiv.org/abs/2408.17432v2
- Date: Wed, 07 May 2025 03:16:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.714167
- Title: SelectTTS: Synthesizing Anyone's Voice via Discrete Unit-Based Frame Selection
- Title(参考訳): SelectTTS: 離散単位フレーム選択による誰でも音声を合成する
- Authors: Ismail Rasim Ulgen, Shreeram Suresh Chandra, Junchen Lu, Berrak Sisman,
- Abstract要約: 提案するSelectTTSは,現行手法の簡易かつ効果的な代替手段である。
SelectTTSはターゲット話者から適切なフレームを選択し、フレームレベルの自己教師型学習(SSL)機能を使用してデコードする。
提案手法は,未確認話者の話者特性を効果的に把握し,最先端のマルチ話者音声フレームワークに匹敵する性能を実現することを実証する。
- 参考スコア(独自算出の注目度): 7.6732312922460055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing the voices of unseen speakers remains a persisting challenge in multi-speaker text-to-speech (TTS). Existing methods model speaker characteristics through speaker conditioning during training, leading to increased model complexity and limiting reproducibility and accessibility. A lower-complexity method would enable speech synthesis research with limited computational and data resources to reach to a wider use. To this end, we propose SelectTTS, a simple and effective alternative. SelectTTS selects appropriate frames from the target speaker and decodes them using frame-level self-supervised learning (SSL) features. We demonstrate that this approach can effectively capture speaker characteristics for unseen speakers and achieves performance comparable to state-of-the-art multi-speaker TTS frameworks on both objective and subjective metrics. By directly selecting frames from the target speaker's speech, SelectTTS enables generalization to unseen speakers with significantly lower model complexity. Compared to baselines such as XTTS-v2 and VALL-E, SelectTTS achieves better speaker similarity while reducing model parameters by over 8x and training data requirements by 270x.
- Abstract(参考訳): 未確認話者の音声を合成することは、マルチ話者テキスト音声(TTS)において持続的な課題である。
既存の手法は、訓練中の話者条件付けを通じて話者特性をモデル化し、モデルの複雑さを増大させ、再現性とアクセシビリティを制限する。
より複雑な方法では、限られた計算資源とデータ資源を持つ音声合成研究がより広範囲に利用できるようになる。
そこで本研究では,SelectTTSを提案する。
SelectTTSはターゲット話者から適切なフレームを選択し、フレームレベルの自己教師型学習(SSL)機能を使用してデコードする。
提案手法は,未確認話者の話者特性を効果的に把握し,客観的および主観的指標の両面において,最先端のマルチ話者TSフレームワークに匹敵する性能を達成できることを実証する。
対象話者の発話からフレームを直接選択することで、SelectTTSはモデル複雑さが著しく低い未確認話者を一般化することができる。
XTTS-v2やVALL-Eといったベースラインと比較して、SelectTTSはモデルパラメータを8倍、データ要求を270倍に削減しながら、話者の類似性を向上する。
関連論文リスト
- Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
本稿では,音声における話者の特性と内容の変動を同時にモデル化するアンタングル化フレームワークを提案する。
実験はVoxCelebとSITWのデータセットで実施され、EERとminDCFの平均減少率は9.56%と8.24%である。
論文 参考訳(メタデータ) (2023-10-02T12:02:07Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeechは拡散モデルに基づく任意の話者適応型TSフレームワークである。
数秒の参照音声が与えられた場合、ターゲット話者の声と非常によく似た、非常に自然な音声を生成することができる。
英語のベンチマークでは、話者適応型TTSベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2022-11-17T07:17:24Z) - Residual Adapters for Few-Shot Text-to-Speech Speaker Adaptation [21.218195769245032]
本稿では,残差アダプタと呼ばれるトレーニング可能な軽量モジュールでバックボーンモデルを拡張したパラメータ効率の低い少数話者適応を提案する。
実験結果から,提案手法は完全微調整手法と比較して,競合自然性や話者類似性を実現できることが示された。
論文 参考訳(メタデータ) (2022-10-28T03:33:07Z) - AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios [143.47967241972995]
高品質音声合成のためのゼロショット適応型TSシステムであるAdaSpeech 4を開発した。
話者特性を体系的にモデル化し、新しい話者の一般化を改善する。
微調整なしでは、AdaSpeech 4は複数のデータセットのベースラインよりも声質と類似性が向上する。
論文 参考訳(メタデータ) (2022-04-01T13:47:44Z) - Meta-TTS: Meta-Learning for Few-Shot Speaker Adaptive Text-to-Speech [62.95422526044178]
マルチスピーカTSモデルのトレーニングアルゴリズムとして,MAML(Model Agnostic Meta-Learning)を用いる。
その結果,Meta-TTSは話者適応ベースラインよりも適応ステップが少ない少数のサンプルから高い話者類似性音声を合成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-07T09:53:31Z) - GC-TTS: Few-shot Speaker Adaptation with Geometric Constraints [36.07346889498981]
話者類似性を大幅に向上した高品質な話者適応を実現するGC-TTSを提案する。
TTSモデルは、十分な量のデータを持つベーススピーカーに対して事前訓練され、それから2つの幾何学的制約を持つ数分のデータに基づいて、新しいスピーカーのために微調整される。
実験結果から,GC-TTSは学習データの数分で高品質な音声を生成できることがわかった。
論文 参考訳(メタデータ) (2021-08-16T04:25:31Z) - GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis [6.632254395574993]
GANSpeechは、非自己回帰型マルチスピーカTSモデルに対向訓練法を採用する高忠実度マルチスピーカTSモデルである。
主観的な聴取試験では、GANSpeechはベースラインのマルチスピーカーであるFastSpeechとFastSpeech2モデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-06-29T08:15:30Z) - Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation [63.561944239071615]
StyleSpeechは、高品質な音声を合成し、新しい話者に適応する新しいTSモデルである。
SALNでは、単一音声音声からでもターゲット話者のスタイルで音声を効果的に合成する。
提案手法をMeta-StyleSpeechに拡張するには,スタイルプロトタイプで訓練された2つの識別器を導入し,エピソード訓練を行う。
論文 参考訳(メタデータ) (2021-06-06T15:34:11Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。