TimeSense: Multi-Person Device-free Indoor Localization via RTT
- URL: http://arxiv.org/abs/2409.00030v1
- Date: Sat, 17 Aug 2024 13:12:33 GMT
- Title: TimeSense: Multi-Person Device-free Indoor Localization via RTT
- Authors: Mohamed Mohsen, Hamada Rizk, Hirozumi Yamaguch, Moustafa Youssef,
- Abstract summary: TimeSense is a device-free indoor localization system based on IEEE 802.11-2016 standard.
TimeSense achieves a median localization accuracy of 1.57 and 2.65 meters.
This surpasses the performance of state-of-the-art techniques by 49% and 103% in the two testbeds.
- Score: 1.7667202894248826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Locating the persons moving through an environment without the necessity of them being equipped with special devices has become vital for many applications including security, IoT, healthcare, etc. Existing device-free indoor localization systems commonly rely on the utilization of Received Signal Strength Indicator (RSSI) and WiFi Channel State Information (CSI) techniques. However, the accuracy of RSSI is adversely affected by environmental factors like multi-path interference and fading. Additionally, the lack of standardization in CSI necessitates the use of specialized hardware and software. In this paper, we present TimeSense, a deep learning-based multi-person device-free indoor localization system that addresses these challenges. TimeSense leverages Time of Flight information acquired by the fine-time measurement protocol of IEEE 802.11-2016 standard. Specifically, the measured round trip time between the transmitter and receiver is influenced by the dynamic changes in the environment induced by human presence. TimeSense effectively detects this anomalous behavior using a stacked denoising auto-encoder model, thereby estimating the user's location. The system incorporates a probabilistic approach on top of the deep learning model to ensure seamless tracking of the users. The evaluation of TimeSene in two realistic environments demonstrates its efficacy, achieving a median localization accuracy of 1.57 and 2.65 meters. This surpasses the performance of state-of-the-art techniques by 49% and 103% in the two testbeds.
Related papers
- Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Time-Selective RNN for Device-Free Multi-Room Human Presence Detection
Using WiFi CSI [9.927073290898848]
Device-free human presence detection is crucial technology for various applications, including home automation, security, and healthcare.
Recent research has explored the use of wireless channel state information extracted from commercial WiFi access points (APs) to provide detailed channel characteristics.
We propose a device-free human presence detection system for multi-room scenarios using a time-selective conditional dual feature extract recurrent network.
arXiv Detail & Related papers (2023-04-25T19:21:47Z) - Attention-Enhanced Deep Learning for Device-Free Through-the-Wall
Presence Detection Using Indoor WiFi Systems [9.087163485833054]
We propose a novel system for human presence detection using the channel state information (CSI) of WiFi signals.
Our system named attention-enhanced deep learning for presence detection (ALPD) employs an attention mechanism to automatically select informative subcarriers from the CSI data.
We evaluate the proposed ALPD system by deploying a pair of WiFi access points (APs) for collecting CSI dataset, which is further compared with several benchmarks.
arXiv Detail & Related papers (2023-04-25T19:17:36Z) - A New Paradigm for Device-free Indoor Localization: Deep Learning with
Error Vector Spectrum in Wi-Fi Systems [7.010598383249521]
This paper proposes a novel error vector assisted learning scheme for device-free indoor localization.
The proposed EVAL scheme employs deep neural networks to classify the location of a person in the indoor environment.
Experimental results show that our proposed EVAL scheme outperforms conventional machine learning methods.
arXiv Detail & Related papers (2023-03-25T04:33:37Z) - CRONOS: Colorization and Contrastive Learning for Device-Free NLoS Human
Presence Detection using Wi-Fi CSI [9.927073290898848]
Device-free human detection through sensors or cameras has been widely adopted, but it comes with privacy issues as well as misdetection for motionless people.
We propose a system called CRONOS, which generates dynamic recurrence plots (RPs) and color-coded CSI ratios to distinguish mobile and stationary people.
arXiv Detail & Related papers (2022-11-07T16:18:18Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research.
As this technology advances, it is becoming increasingly useful also in society.
To successfully employ pedestrian tracking techniques in research and technology, it is crucial to validate and benchmark them for accuracy.
We present and discuss a benchmark suite, towards an open standard in the community, for privacy-respectful pedestrian tracking techniques.
arXiv Detail & Related papers (2021-08-26T11:45:26Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning.
Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment.
A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection.
arXiv Detail & Related papers (2020-02-13T20:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.