論文の概要: Urban Mobility Assessment Using LLMs
- arxiv url: http://arxiv.org/abs/2409.00063v1
- Date: Thu, 22 Aug 2024 19:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:31:02.378277
- Title: Urban Mobility Assessment Using LLMs
- Title(参考訳): LLMを用いた都市モビリティアセスメント
- Authors: Prabin Bhandari, Antonios Anastasopoulos, Dieter Pfoser,
- Abstract要約: 本研究は,大規模言語モデル(LLM)を推進し,旅行調査を合成する,革新的なAIベースのアプローチを提案する。
本研究は, 異なるレベルの既存調査データと比較し, 全米各都市圏におけるこのアプローチの有効性について検討した。
- 参考スコア(独自算出の注目度): 19.591156495742922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.
- Abstract(参考訳): 都市移動パターンを理解し、人々がどのように都市を動き回るかを分析することは、生活の全体的な品質を改善し、より生き生きとした、効率的で持続可能な都市部の開発を支援する。
この作業の難しい側面は、ユーザの追跡や旅行調査によるモビリティデータの収集である。
本研究は,大規模言語モデル(LLM)を推進し,膨大な量の背景知識とテキスト生成能力を活用することによって,旅行調査を合成する,革新的なAIベースのアプローチを提案する。
本研究は, 異なる粒度レベルの既存調査データと比較し, この手法の有効性について評価した。
これらのレベルには
(i)旅行の所数や旅行時間などの集計値を比較するパターンレベル。
(二)トランジション確率を用いた旅行を単位単位として比較することに焦点を当てた旅行水準、
三 個人が訪れた場所の順序を調べる活動連鎖レベル。
本研究は,Llama-2のようなオープンソースベースモデルを用いて,限られた実際のデータ量でも微調整することで,実際の旅行調査データを忠実に模倣した合成データを生成することができることを示す。
関連論文リスト
- Guided Persona-based AI Surveys: Can we replicate personal mobility preferences at scale using LLMs? [1.7819574476785418]
本研究では,Large Language Models (LLMs) が人工的なサーベイを生成する可能性について検討する。
合成データ作成にLLMを活用することにより,従来の調査手法の限界に対処することを目指す。
Personas」を取り入れた新しい手法が提案され、他の5つの総合的なサーベイ手法と比較された。
論文 参考訳(メタデータ) (2025-01-20T15:11:03Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
VLN(Vision-and-Language Navigation)は、自然言語の指示に従って、エージェントがフォトリアリスティックな環境をナビゲートする必要がある課題である。
VLNの主な障害はデータの不足であり、目に見えない環境における一般化性能の低下につながる。
多様性と世界整合性の両方を満たす効率的なデータ拡張フレームワークである世界整合データ生成(WCGEN)を提案する。
論文 参考訳(メタデータ) (2024-12-09T11:40:54Z) - Noise Matters: Diffusion Model-based Urban Mobility Generation with Collaborative Noise Priors [17.77624029197469]
現実世界のモビリティデータは費用がかかり、プライバシーの懸念が高まる。
拡散モデルの最近の進歩は、移動軌道生成に大きな可能性を示している。
本研究では,コラボレーティブノイズの先行する都市モビリティ生成のための拡散モデルであるCoDiffMobを提案する。
論文 参考訳(メタデータ) (2024-12-06T12:52:24Z) - Be More Real: Travel Diary Generation Using LLM Agents and Individual Profiles [21.72229002939936]
本研究では,現実の文脈に応じたリアルな軌跡を生成するためのエージェントベースフレームワーク(MobAgent)を提案する。
当フレームワークを0.2万回の旅行調査データで検証し,個人化された正確な旅行日記を作成する上での有効性を実証した。
本研究は、実世界の移動データを通して、人間の移動性に関する詳細かつ洗練された理解を提供するLLMの能力を強調した。
論文 参考訳(メタデータ) (2024-07-10T09:11:57Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
我々は,人間の移動性モデリングと合成のための新しい生成的深層学習手法を開発した。
オープンソースのデータを使って、アクティビティパターンとロケーショントラジェクトリの両方を組み込む。
モデルはローカルデータで微調整できるため、さまざまな領域にわたるモビリティパターンを正確に表現することができる。
論文 参考訳(メタデータ) (2024-05-24T02:04:10Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
本稿では,DeepSEIと呼ばれる,社会経済に配慮したディープモデルを提案する。
DeepSEIモデルはディープネットワークとリカレントネットワークと呼ばれる2つのネットワークを組み込んでいる。
実際の移動記録データ、POIデータ、住宅価格データについて広範な実験を行う。
論文 参考訳(メタデータ) (2022-11-15T15:07:45Z) - A deep learning framework to generate realistic population and mobility
data [5.180648702293017]
国勢調査と家庭旅行調査のデータセットは、定期的に家庭や個人から収集されている。
これらのデータセットは、プライバシの懸念による人口の限られたサンプルを表すか、集約されることが多い。
本稿では,社会経済的特徴(年齢,性別,産業など)とトリップチェーン(活動場所)の両方を含む合成人口を生成する枠組みを提案する。
論文 参考訳(メタデータ) (2022-11-14T14:05:09Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
モバイルデータ分析における多くの関心は、人間とその行動に関連している。
本研究の目的は,携帯電話データから知識を発見するために実装された手法や手法をレビューすることである。
論文 参考訳(メタデータ) (2020-08-29T15:14:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。