Urban Mobility Assessment Using LLMs
- URL: http://arxiv.org/abs/2409.00063v1
- Date: Thu, 22 Aug 2024 19:17:33 GMT
- Title: Urban Mobility Assessment Using LLMs
- Authors: Prabin Bhandari, Antonios Anastasopoulos, Dieter Pfoser,
- Abstract summary: This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs)
Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different levels.
- Score: 19.591156495742922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.
Related papers
- AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework [7.007450097312181]
We introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide.
In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks.
Experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics.
arXiv Detail & Related papers (2024-08-26T02:36:55Z) - Be More Real: Travel Diary Generation Using LLM Agents and Individual Profiles [21.72229002939936]
This study presents an agent-based framework (MobAgent) to generate realistic trajectories conforming to real world contexts.
We validate our framework with 0.2 million travel survey data, demonstrating its effectiveness in producing personalized and accurate travel diaries.
This study highlights the capacity of LLMs to provide detailed and sophisticated understanding of human mobility through the real-world mobility data.
arXiv Detail & Related papers (2024-07-10T09:11:57Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Deciphering Human Mobility: Inferring Semantics of Trajectories with Large Language Models [10.841035090991651]
This paper defines semantic inference through three key dimensions: user occupation category, activity, sequence and trajectory description.
We propose Trajectory Semantic Inference with Large Language Models (TSI-LLM) framework to leverage semantic analysis of trajectory data.
arXiv Detail & Related papers (2024-05-30T08:55:48Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
We develop a novel generative deep learning approach for human mobility modeling and synthesis.
It incorporates both activity patterns and location trajectories using open-source data.
The model can be fine-tuned with local data, allowing it to adapt to accurately represent mobility patterns across diverse regions.
arXiv Detail & Related papers (2024-05-24T02:04:10Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
We propose a socioeconomic-aware deep model called DeepSEI.
The DeepSEI model incorporates two networks called deep network and recurrent network.
We conduct extensive experiments on real mobility records data, POI data and house prices data.
arXiv Detail & Related papers (2022-11-15T15:07:45Z) - A deep learning framework to generate realistic population and mobility
data [5.180648702293017]
Census and Household Travel Survey datasets are regularly collected from households and individuals.
These datasets often represent a limited sample of the population due to privacy concerns or are given aggregated.
We propose a framework to generate a synthetic population that includes both socioeconomic features (e.g., age, sex, industry) and trip chains (i.e., activity locations)
arXiv Detail & Related papers (2022-11-14T14:05:09Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.