Guided Persona-based AI Surveys: Can we replicate personal mobility preferences at scale using LLMs?
- URL: http://arxiv.org/abs/2501.13955v1
- Date: Mon, 20 Jan 2025 15:11:03 GMT
- Title: Guided Persona-based AI Surveys: Can we replicate personal mobility preferences at scale using LLMs?
- Authors: Ioannis Tzachristas, Santhanakrishnan Narayanan, Constantinos Antoniou,
- Abstract summary: This study explores the potential of Large Language Models (LLMs) to generate artificial surveys.
By leveraging LLMs for synthetic data creation, we aim to address the limitations of traditional survey methods.
A novel approach incorporating "Personas" is introduced and compared to five other synthetic survey methods.
- Score: 1.7819574476785418
- License:
- Abstract: This study explores the potential of Large Language Models (LLMs) to generate artificial surveys, with a focus on personal mobility preferences in Germany. By leveraging LLMs for synthetic data creation, we aim to address the limitations of traditional survey methods, such as high costs, inefficiency and scalability challenges. A novel approach incorporating "Personas" - combinations of demographic and behavioural attributes - is introduced and compared to five other synthetic survey methods, which vary in their use of real-world data and methodological complexity. The MiD 2017 dataset, a comprehensive mobility survey in Germany, serves as a benchmark to assess the alignment of synthetic data with real-world patterns. The results demonstrate that LLMs can effectively capture complex dependencies between demographic attributes and preferences while offering flexibility to explore hypothetical scenarios. This approach presents valuable opportunities for transportation planning and social science research, enabling scalable, cost-efficient and privacy-preserving data generation.
Related papers
- Large Language Models for Market Research: A Data-augmentation Approach [3.3199591445531453]
Large Language Models (LLMs) have transformed artificial intelligence by excelling in complex natural language processing tasks.
Recent studies highlight a significant gap between LLM-generated and human data, with biases introduced when substituting between the two.
We propose a novel statistical data augmentation approach that efficiently integrates LLM-generated data with real data in conjoint analysis.
arXiv Detail & Related papers (2024-12-26T22:06:29Z) - Agentic Society: Merging skeleton from real world and texture from Large Language Model [4.740886789811429]
This paper explores a novel framework that leverages census data and large language models to generate virtual populations.
We show that our method produces personas with variability essential for simulating diverse human behaviors in social science experiments.
But the evaluation result shows that only weak sign of statistical truthfulness can be produced due to limited capability of current LLMs.
arXiv Detail & Related papers (2024-09-02T08:28:19Z) - Urban Mobility Assessment Using LLMs [19.591156495742922]
This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs)
Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different levels.
arXiv Detail & Related papers (2024-08-22T19:17:33Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey [26.670507323784616]
Large Language Models (LLMs) offer a data-centric solution to alleviate the limitations of real-world data with synthetic data generation.
This paper provides an organization of relevant studies based on a generic workflow of synthetic data generation.
arXiv Detail & Related papers (2024-06-14T07:47:09Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.
It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT.
To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset.
arXiv Detail & Related papers (2023-06-23T15:15:13Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.