Negation Blindness in Large Language Models: Unveiling the NO Syndrome in Image Generation
- URL: http://arxiv.org/abs/2409.00105v2
- Date: Wed, 4 Sep 2024 14:40:14 GMT
- Title: Negation Blindness in Large Language Models: Unveiling the NO Syndrome in Image Generation
- Authors: Mohammad Nadeem, Shahab Saquib Sohail, Erik Cambria, Björn W. Schuller, Amir Hussain,
- Abstract summary: Foundational Large Language Models (LLMs) have changed the way we perceive technology.
They have been shown to excel in tasks ranging from poem writing to coding to essay generation and puzzle solving.
With the incorporation of image generation capability, they have become more comprehensive and versatile AI tools.
Currently identified flaws include hallucination, biases, and bypassing restricted commands to generate harmful content.
- Score: 63.064204206220936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Foundational Large Language Models (LLMs) have changed the way we perceive technology. They have been shown to excel in tasks ranging from poem writing and coding to essay generation and puzzle solving. With the incorporation of image generation capability, they have become more comprehensive and versatile AI tools. At the same time, researchers are striving to identify the limitations of these tools to improve them further. Currently identified flaws include hallucination, biases, and bypassing restricted commands to generate harmful content. In the present work, we have identified a fundamental limitation related to the image generation ability of LLMs, and termed it The NO Syndrome. This negation blindness refers to LLMs inability to correctly comprehend NO related natural language prompts to generate the desired images. Interestingly, all tested LLMs including GPT-4, Gemini, and Copilot were found to be suffering from this syndrome. To demonstrate the generalization of this limitation, we carried out simulation experiments and conducted entropy-based and benchmark statistical analysis tests on various LLMs in multiple languages, including English, Hindi, and French. We conclude that the NO syndrome is a significant flaw in current LLMs that needs to be addressed. A related finding of this study showed a consistent discrepancy between image and textual responses as a result of this NO syndrome. We posit that the introduction of a negation context-aware reinforcement learning based feedback loop between the LLMs textual response and generated image could help ensure the generated text is based on both the LLMs correct contextual understanding of the negation query and the generated visual output.
Related papers
- Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective [5.769786334333616]
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) based applications including automated text generation, question answering, and others.
They face a significant challenge: hallucinations, where models produce plausible-sounding but factually incorrect responses.
This paper discusses these open challenges covering state-of-the-art datasets and benchmarks as well as methods for knowledge integration and evaluating hallucinations.
arXiv Detail & Related papers (2024-11-21T16:09:05Z) - A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification [2.556395214262035]
Neurological disorders that affect speech production, such as Alzheimer's Disease (AD), significantly impact the lives of both patients and caregivers.
Recent advancements in Large Language Model (LLM) architectures have developed many tools to identify representative features of neurological disorders through spontaneous speech.
This paper presents an explainable LLM method, named SLIME, capable of identifying lexical components representative of AD.
arXiv Detail & Related papers (2024-09-30T21:45:02Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
Large Language Models (LLMs) continue to advance in their ability to write human-like text.
A key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded.
This paper presents a survey of over 32 techniques developed to mitigate hallucination in LLMs.
arXiv Detail & Related papers (2024-01-02T17:56:30Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.
These hallucinations are challenging to detect through traditional methods.
We propose an adversarially DEcoupling method to disentangle the abilities of LLMs (DECENT)
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation [51.08810811457617]
vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO.
We develop a method for instruction-tuning an LLM only on text to gain vision-language capabilities for medical images.
Our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks.
arXiv Detail & Related papers (2023-05-19T07:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.