論文の概要: HoneyComb: A Flexible LLM-Based Agent System for Materials Science
- arxiv url: http://arxiv.org/abs/2409.00135v1
- Date: Thu, 29 Aug 2024 15:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:50:17.432436
- Title: HoneyComb: A Flexible LLM-Based Agent System for Materials Science
- Title(参考訳): HoneyComb:材料科学のためのフレキシブルLCMベースのエージェントシステム
- Authors: Huan Zhang, Yu Song, Ziyu Hou, Santiago Miret, Bang Liu,
- Abstract要約: HoneyCombは材料科学に特化した最初の大規模言語モデルシステムである。
MatSciKBは、信頼できる文献に基づいた、キュレートされた構造化された知識収集である。
ToolHubはインダクティブツール構築法を使用して、材料科学のためのAPIツールを生成し、分解し、洗練する。
- 参考スコア(独自算出の注目度): 31.173615509567885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of specialized large language models (LLMs) has shown promise in addressing complex tasks for materials science. Many LLMs, however, often struggle with distinct complexities of material science tasks, such as materials science computational tasks, and often rely heavily on outdated implicit knowledge, leading to inaccuracies and hallucinations. To address these challenges, we introduce HoneyComb, the first LLM-based agent system specifically designed for materials science. HoneyComb leverages a novel, high-quality materials science knowledge base (MatSciKB) and a sophisticated tool hub (ToolHub) to enhance its reasoning and computational capabilities tailored to materials science. MatSciKB is a curated, structured knowledge collection based on reliable literature, while ToolHub employs an Inductive Tool Construction method to generate, decompose, and refine API tools for materials science. Additionally, HoneyComb leverages a retriever module that adaptively selects the appropriate knowledge source or tools for specific tasks, thereby ensuring accuracy and relevance. Our results demonstrate that HoneyComb significantly outperforms baseline models across various tasks in materials science, effectively bridging the gap between current LLM capabilities and the specialized needs of this domain. Furthermore, our adaptable framework can be easily extended to other scientific domains, highlighting its potential for broad applicability in advancing scientific research and applications.
- Abstract(参考訳): 特殊な大規模言語モデル(LLM)の出現は、材料科学の複雑な課題に対処する上で有望であることを示している。
しかし、多くのLSMは、材料科学の計算タスクのような、物質科学のタスクの異なる複雑さに苦しむことが多く、しばしば時代遅れの暗黙の知識に強く依存し、不正確さや幻覚をもたらす。
これらの課題に対処するために,材料科学に特化して設計された最初のLCMベースのエージェントシステムであるHoneyCombを紹介する。
HoneyCombは、新しい高品質の材料科学知識ベース(MatSciKB)と高度なツールハブ(ToolHub)を活用して、材料科学に適した推論と計算能力を強化している。
MatSciKBは信頼性の高い文献に基づく構造化された知識収集であり、ToolHubはインダクティブツール構築法を使用して、材料科学のためのAPIツールを生成し、分解し、洗練する。
さらに、HoneyCombは、特定のタスクに対して適切な知識ソースまたはツールを適応的に選択する検索モジュールを活用し、精度と関連性を保証する。
以上の結果から,HoneyCombは材料科学における各種タスクにおけるベースラインモデルよりも有意に優れており,現在のLLM能力とこの分野の専門的ニーズとのギャップを効果的に埋めていることが明らかとなった。
さらに、我々の適応可能なフレームワークは他の科学分野にも容易に拡張でき、科学研究や応用の進展における幅広い適用可能性を強調している。
関連論文リスト
- From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
科学知識の大部分は、構造化されていない自然言語に存在する。
構造化データは革新的で体系的な材料設計に不可欠である。
大きな言語モデル(LLM)の出現は、大きな変化を示している。
論文 参考訳(メタデータ) (2024-07-23T22:23:47Z) - LLMatDesign: Autonomous Materials Discovery with Large Language Models [5.481299708562135]
新しい材料は科学的、技術的に重要な意味を持つ。
機械学習の最近の進歩により、データ駆動の手法により、有望な材料を素早くスクリーニングしたり、生成したりすることが可能になった。
LLMatDesignは,大規模言語モデルを用いた材料設計のための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-19T02:35:02Z) - Materials science in the era of large language models: a perspective [0.0]
大きな言語モデル(LLM)は、その印象的な能力によってかなりの関心を集めている。
この論文は、様々なタスクや規律にわたる曖昧な要求に対処する能力は、研究者を支援する強力なツールになり得ると論じている。
論文 参考訳(メタデータ) (2024-03-11T17:34:25Z) - SciAgent: Tool-augmented Language Models for Scientific Reasoning [129.51442677710452]
ツール強化科学推論という新しいタスク設定を導入する。
この設定は、スケーラブルなツールセットでLarge Language Modelsを補完する。
約3万のサンプルと約6,000のツールを含むツール拡張トレーニングコーパスであるMathFuncを構築した。
MathFunc上に構築したSciAgentは,科学的な問題解決のためのツールを検索し,理解し,必要に応じて利用する。
論文 参考訳(メタデータ) (2024-02-18T04:19:44Z) - Are LLMs Ready for Real-World Materials Discovery? [10.87312197950899]
大規模言語モデル(LLM)は、材料科学の研究を加速する強力な言語処理ツールのエキサイティングな可能性を生み出します。
LLMは、物質理解と発見を加速する大きな可能性を秘めているが、現在は実用的な材料科学ツールとして不足している。
材料科学におけるLLMの失敗事例として,複雑で相互接続された材料科学知識の理解と推論に関連するLCMの現在の限界を明らかにする。
論文 参考訳(メタデータ) (2024-02-07T19:10:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
我々は,大規模言語モデル(LLM)を利用した化学AIエージェントを開発し,自然言語テキストから構造化データセットを作成する。
化学者のAIエージェントであるEunomiaは、何十年もの科学研究論文から既存の知識を活用して、行動を計画し実行することができる。
論文 参考訳(メタデータ) (2023-12-18T20:29:58Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。