論文の概要: ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning
- arxiv url: http://arxiv.org/abs/2501.06590v1
- Date: Sat, 11 Jan 2025 17:10:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:02.257044
- Title: ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning
- Title(参考訳): ChemAgent: 大規模言語モデルにおける自己更新ライブラリは、化学推論を改善する
- Authors: Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, Mark Gerstein,
- Abstract要約: ChemAgentは,大規模言語モデル(LLM)の性能向上を目的とした,新しいフレームワークである。
化学タスクをサブタスクに分解し、これらのサブタスクを将来のクエリに参照可能な構造化されたコレクションにコンパイルすることで開発される。
新しい問題を提示すると、ChemAgentは、私たちがメモリと呼ぶライブラリから関連する情報を検索し、精査する。
- 参考スコア(独自算出の注目度): 64.2106664137118
- License:
- Abstract: Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent
- Abstract(参考訳): 化学推論は通常、正確な計算を必要とする複雑で多段階のプロセスを伴う。
さらに、大規模言語モデル(LLM)は、ドメイン固有の式を扱うのに苦労し、推論ステップを正確に実行し、化学推論タスクに対処する際のコード統合を効果的に行う。
これらの課題に対処するため,動的自己更新ライブラリによるLCMの性能向上を目的とした新しいフレームワークであるChemAgentを提案する。
このライブラリは、化学タスクをサブタスクに分解し、これらのサブタスクを将来のクエリに参照可能な構造化されたコレクションにコンパイルすることで開発される。
そこで、ChemAgentは、新しい問題を提示すると、ライブラリから関連する情報を検索して精査し、それをメモリと呼び、効率的なタスク分解とソリューションの生成を容易にする。
提案手法は,3種類のメモリとライブラリを拡張した推論コンポーネントを設計し,LLMが経験を通して時間とともに改善することを可能にする。
SciBenchによる4つの化学推論データセットの実験結果から、ChemAgentは最大46%(GPT-4)の性能向上を達成し、既存の手法よりも大幅に優れていることが示された。
薬物発見や材料科学など,今後の応用の可能性も示唆された。
私たちのコードはhttps://github.com/gersteinlab/chemagentで確認できます。
関連論文リスト
- ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
この領域の既存のベンチマークは、化学研究専門家の特定の要求を適切に満たさない。
ChemEvalは化学の4つの重要な進歩レベルを特定し、42の異なる化学タスクで12次元のLCMを評価する。
その結果, LLMは文献の理解と指導に優れる一方で, 高度な化学知識を必要とするタスクでは不足していることがわかった。
論文 参考訳(メタデータ) (2024-09-21T02:50:43Z) - A Review of Large Language Models and Autonomous Agents in Chemistry [0.7184549921674758]
大規模言語モデル(LLM)は化学において強力なツールとして登場した。
このレビューでは、化学におけるLCMの機能と、自動化による科学的発見を加速する可能性を強調している。
エージェントは新たなトピックであるので、化学以外のエージェントのレビューの範囲を広げます。
論文 参考訳(メタデータ) (2024-06-26T17:33:21Z) - Efficient Evolutionary Search Over Chemical Space with Large Language Models [31.31899988523534]
最適化の目的は区別できない。
化学対応大規模言語モデル(LLM)を進化的アルゴリズムに導入する。
我々のアルゴリズムは最終解の質と収束速度の両方を改善する。
論文 参考訳(メタデータ) (2024-06-23T06:22:49Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
大規模言語モデル(LLM)は化学応用において顕著な進歩を遂げた。
しかし、コミュニティには化学に特化したLLMが欠落している。
本稿では,化学に特化した最初のLLMを特徴とする包括的フレームワークであるChemLLMを紹介する。
論文 参考訳(メタデータ) (2024-02-10T01:11:59Z) - LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation [0.0]
大規模言語モデル(LLM)は本質的に長期記憶を欠いているため、ドメイン固有の文献やデータに基づいてそれらを微調整する非自明でアドホックで必然的にバイアスのあるタスクである。
本稿では、階層的推論・実行(RAG)エージェントのフレームワークであるLLaMPを紹介し、計算および実験データと相互作用できる。
微調整なしでは、LLaMPは材料科学の概念の様々なモダリティを理解し統合する強力なツール利用能力を示す。
論文 参考訳(メタデータ) (2024-01-30T18:37:45Z) - Structured Chemistry Reasoning with Large Language Models [70.13959639460015]
大規模言語モデル(LLMs)は様々な分野において優れているが、特に化学において複雑な科学的推論に苦慮している。
所望のガイダンスを提供し,LSMの化学的推論能力を大幅に向上させる,シンプルで効果的なプロンプト戦略であるStructChemを紹介した。
量子化学、力学、物理化学、運動学の4分野にわたる試験では、StructChemはGPT-4の性能を大幅に向上させ、最大30%のピーク改善を実現している。
論文 参考訳(メタデータ) (2023-11-16T08:20:36Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - ChemCrow: Augmenting large-language models with chemistry tools [0.9195187117013247]
大規模言語モデル(LLM)は、領域全体にわたるタスクにおいて高いパフォーマンスを示してきたが、化学に関連した問題に悩まされている。
本研究では, 有機合成, 創薬, 材料設計における課題を遂行するLLM化学剤であるChemCrowを紹介する。
我々のエージェントは、昆虫の忌避剤である3種の有機触媒の合成を自律的に計画し、実行し、新しいクロモフォアの発見を導いた。
論文 参考訳(メタデータ) (2023-04-11T17:41:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。