Developing an End-to-End Framework for Predicting the Social Communication Severity Scores of Children with Autism Spectrum Disorder
- URL: http://arxiv.org/abs/2409.00158v1
- Date: Fri, 30 Aug 2024 14:43:58 GMT
- Title: Developing an End-to-End Framework for Predicting the Social Communication Severity Scores of Children with Autism Spectrum Disorder
- Authors: Jihyun Mun, Sunhee Kim, Minhwa Chung,
- Abstract summary: This paper proposes an end-to-end framework for automatically predicting the social communication severity of children with ASD from raw speech data.
Achieving a Pearson Correlation Coefficient of 0.6566 with human-rated scores, the proposed method showcases its potential as an accessible and objective tool for the assessment of ASD.
- Score: 6.197934754799159
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autism Spectrum Disorder (ASD) is a lifelong condition that significantly influencing an individual's communication abilities and their social interactions. Early diagnosis and intervention are critical due to the profound impact of ASD's characteristic behaviors on foundational developmental stages. However, limitations of standardized diagnostic tools necessitate the development of objective and precise diagnostic methodologies. This paper proposes an end-to-end framework for automatically predicting the social communication severity of children with ASD from raw speech data. This framework incorporates an automatic speech recognition model, fine-tuned with speech data from children with ASD, followed by the application of fine-tuned pre-trained language models to generate a final prediction score. Achieving a Pearson Correlation Coefficient of 0.6566 with human-rated scores, the proposed method showcases its potential as an accessible and objective tool for the assessment of ASD.
Related papers
- Script-centric behavior understanding for assisted autism spectrum disorder diagnosis [6.198128116862245]
This work focuses on automatically detecting Autism Spectrum Disorders (ASD) using computer vision techniques and large language models (LLMs)
Our pipeline converts video content into scripts that describe the behavior of characters, leveraging the generalizability of large language models to detect ASD in a zero-shot or few-shot manner.
Our method achieves an accuracy of 92.00% in diagnosing ASD in children with an average age of 24 months, surpassing the performance of supervised learning methods by 3.58% absolutely.
arXiv Detail & Related papers (2024-11-14T13:07:19Z) - Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods.
Our approach utilizes data collected manually through a serious game specifically designed for this purpose.
Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning framework.
arXiv Detail & Related papers (2024-10-25T23:00:12Z) - Modality-Order Matters! A Novel Hierarchical Feature Fusion Method for CoSAm: A Code-Switched Autism Corpus [3.06952918690254]
This study introduces a novel hierarchical feature fusion method aimed at enhancing the early detection of ASD in children.
The methodology involves collecting a code-switched speech corpus, CoSAm, from children diagnosed with ASD and a matched control group.
The dataset comprises 61 voice recordings from 30 children diagnosed with ASD and 31 from neurotypical children, aged between 3 and 13 years.
arXiv Detail & Related papers (2024-07-19T14:06:01Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
This study presents a comprehensive approach to identify distinctive speech patterns through the analysis of examiner-patient dialogues.
We extracted 40 speech-related features, categorized into frequency, zero-crossing rate, energy, spectral characteristics, Mel Frequency Cepstral Coefficients (MFCCs) and balance.
The classification model aimed to differentiate between ASD and non-ASD cases, achieving an accuracy of 87.75%.
arXiv Detail & Related papers (2024-05-03T02:59:15Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Understanding Spoken Language Development of Children with ASD Using
Pre-trained Speech Embeddings [26.703275678213135]
Natural Language Sample (NLS) analysis has gained attention as a promising complement to traditional methods.
This paper proposes applications of speech processing technologies in support of automated assessment of children's spoken language development.
arXiv Detail & Related papers (2023-05-23T14:39:49Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care to delay further progression.
This paper presents the development of a state-of-the-art Conformer based speech recognition system built on the DementiaBank Pitt corpus for automatic AD detection.
arXiv Detail & Related papers (2022-06-23T12:50:55Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.