Learning-Based Finite Element Methods Modeling for Complex Mechanical Systems
- URL: http://arxiv.org/abs/2409.00160v1
- Date: Fri, 30 Aug 2024 15:56:50 GMT
- Title: Learning-Based Finite Element Methods Modeling for Complex Mechanical Systems
- Authors: Jiasheng Shi, Fu Lin, Weixiong Rao,
- Abstract summary: Complex mechanic systems simulation is important in many real-world applications.
Recent CNN or GNN-based simulation models still struggle to effectively represent complex mechanic simulation.
In this paper, we propose a novel two-level mesh graph network.
- Score: 1.6977525619006286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex mechanic systems simulation is important in many real-world applications. The de-facto numeric solver using Finite Element Method (FEM) suffers from computationally intensive overhead. Though with many progress on the reduction of computational time and acceptable accuracy, the recent CNN or GNN-based simulation models still struggle to effectively represent complex mechanic simulation caused by the long-range spatial dependency of distance mesh nodes and independently learning local and global representation. In this paper, we propose a novel two-level mesh graph network. The key of the network is to interweave the developed Graph Block and Attention Block to better learn mechanic interactions even for long-rang spatial dependency. Evaluation on three synthetic and one real datasets demonstrates the superiority of our work. For example, on the Beam dataset, our work leads to 54.3\% lower prediction errors and 9.87\% fewer learnable network parameters.
Related papers
- Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems [7.384641647468888]
We develop a novel hierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective mechanical simulation.
Evaluation on two synthetic and one real datasets demonstrates the superiority of the UA-MGN.
arXiv Detail & Related papers (2024-09-07T07:09:58Z) - Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
This work introduces PI-MGNs, a hybrid approach that combines PINNs and MGNs to solve non-stationary and nonlinear partial differential equations (PDEs) on arbitrary meshes.
Results show that the model scales well to large and complex meshes, although it is trained on small generic meshes only.
arXiv Detail & Related papers (2024-02-16T13:34:51Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
We investigate how an often overlooked processing step affects the quality of an emulator's predictions.
We implement ML architectures from a class of methods called reservoir computing: (1) a form of spatial Vector Autoregression (N VAR), and (2) an Echo State Network (ESN)
In all cases, subsampling the training data consistently leads to an increased bias at small scales that resembles numerical diffusion.
arXiv Detail & Related papers (2023-04-28T21:34:53Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - MultiScale MeshGraphNets [65.26373813797409]
We propose two complementary approaches to improve the framework from MeshGraphNets.
First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh.
Second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions.
arXiv Detail & Related papers (2022-10-02T20:16:20Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
We introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks.
Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth.
arXiv Detail & Related papers (2020-10-07T13:34:49Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.