Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems
- URL: http://arxiv.org/abs/2409.04740v1
- Date: Sat, 7 Sep 2024 07:09:58 GMT
- Title: Up-sampling-only and Adaptive Mesh-based GNN for Simulating Physical Systems
- Authors: Fu Lin, Jiasheng Shi, Shijie Luo, Qinpei Zhao, Weixiong Rao, Lei Chen,
- Abstract summary: We develop a novel hierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective mechanical simulation.
Evaluation on two synthetic and one real datasets demonstrates the superiority of the UA-MGN.
- Score: 7.384641647468888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional simulation of complex mechanical systems relies on numerical solvers of Partial Differential Equations (PDEs), e.g., using the Finite Element Method (FEM). The FEM solvers frequently suffer from intensive computation cost and high running time. Recent graph neural network (GNN)-based simulation models can improve running time meanwhile with acceptable accuracy. Unfortunately, they are hard to tailor GNNs for complex mechanical systems, including such disadvantages as ineffective representation and inefficient message propagation (MP). To tackle these issues, in this paper, with the proposed Up-sampling-only and Adaptive MP techniques, we develop a novel hierarchical Mesh Graph Network, namely UA-MGN, for efficient and effective mechanical simulation. Evaluation on two synthetic and one real datasets demonstrates the superiority of the UA-MGN. For example, on the Beam dataset, compared to the state-of-the-art MS-MGN, UA-MGN leads to 40.99% lower errors but using only 43.48% fewer network parameters and 4.49% fewer floating point operations (FLOPs).
Related papers
- Graph Convolutional Neural Networks as Surrogate Models for Climate Simulation [0.1884913108327873]
We leverage fully-connected neural networks (FCNNs) and graph convolutional neural networks (GCNNs) to enable rapid simulation and uncertainty quantification.
Our surrogate simulated 80 years in approximately 310 seconds on a single A100 GPU, compared to weeks for the ESM model.
arXiv Detail & Related papers (2024-09-19T14:41:15Z) - Learning-Based Finite Element Methods Modeling for Complex Mechanical Systems [1.6977525619006286]
Complex mechanic systems simulation is important in many real-world applications.
Recent CNN or GNN-based simulation models still struggle to effectively represent complex mechanic simulation.
In this paper, we propose a novel two-level mesh graph network.
arXiv Detail & Related papers (2024-08-30T15:56:50Z) - Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
This work introduces PI-MGNs, a hybrid approach that combines PINNs and MGNs to solve non-stationary and nonlinear partial differential equations (PDEs) on arbitrary meshes.
Results show that the model scales well to large and complex meshes, although it is trained on small generic meshes only.
arXiv Detail & Related papers (2024-02-16T13:34:51Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - MISNN: Multiple Imputation via Semi-parametric Neural Networks [9.594714330925703]
Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research.
We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI.
arXiv Detail & Related papers (2023-05-02T21:45:36Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - A Mixed Quantization Network for Computationally Efficient Mobile
Inverse Tone Mapping [8.277567852741242]
We propose combining efficient operations of deep neural networks with a novel mixed quantization scheme to construct a well-performing but computationally efficient mixed quantization network (MQN)
MQN provides up to 10 times improvement on latency and 25 times improvement on memory consumption.
arXiv Detail & Related papers (2022-03-12T19:40:01Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.