論文の概要: Unintentional Security Flaws in Code: Automated Defense via Root Cause Analysis
- arxiv url: http://arxiv.org/abs/2409.00199v1
- Date: Fri, 30 Aug 2024 18:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:37:47.869115
- Title: Unintentional Security Flaws in Code: Automated Defense via Root Cause Analysis
- Title(参考訳): コードの意図しないセキュリティ欠陥:根本原因分析による自動防御
- Authors: Nafis Tanveer Islam, Mazal Bethany, Dylan Manuel, Murtuza Jadliwala, Peyman Najafirad,
- Abstract要約: 我々はT5-RCGCNと呼ばれる自動脆弱性根本原因(RC)ツールキットを開発した。
T5言語モデルの埋め込みと、脆弱性分類とローカライゼーションのためのグラフ畳み込みネットワーク(GCN)を組み合わせる。
3つのデータセットで56人のジュニア開発者を対象に、T5-RCGCNをテストしました。
- 参考スコア(独自算出の注目度): 2.899501205987888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software security remains a critical concern, particularly as junior developers, often lacking comprehensive knowledge of security practices, contribute to codebases. While there are tools to help developers proactively write secure code, their actual effectiveness in helping developers fix their vulnerable code remains largely unmeasured. Moreover, these approaches typically focus on classifying and localizing vulnerabilities without highlighting the specific code segments that are the root cause of the issues, a crucial aspect for developers seeking to fix their vulnerable code. To address these challenges, we conducted a comprehensive study evaluating the efficacy of existing methods in helping junior developers secure their code. Our findings across five types of security vulnerabilities revealed that current tools enabled developers to secure only 36.2\% of vulnerable code. Questionnaire results from these participants further indicated that not knowing the code that was the root cause of the vulnerability was one of their primary challenges in repairing the vulnerable code. Informed by these insights, we developed an automated vulnerability root cause (RC) toolkit called T5-RCGCN, that combines T5 language model embeddings with a graph convolutional network (GCN) for vulnerability classification and localization. Additionally, we integrated DeepLiftSHAP to identify the code segments that were the root cause of the vulnerability. We tested T5-RCGCN with 56 junior developers across three datasets, showing a 28.9\% improvement in code security compared to previous methods. Developers using the tool also gained a deeper understanding of vulnerability root causes, resulting in a 17.0\% improvement in their ability to secure code independently. These results demonstrate the tool's potential for both immediate security enhancement and long-term developer skill growth.
- Abstract(参考訳): ソフトウェアセキュリティは依然として重要な問題であり、特にジュニア開発者は、セキュリティプラクティスに関する包括的な知識を欠いていることが多いため、コードベースに貢献している。
開発者が積極的にセキュアなコードを書くのを助けるツールは存在するが、開発者が脆弱性のあるコードを修正するのを手助けする実際の効果はほとんど測定されていない。
さらに、これらのアプローチは、脆弱性の分類とローカライズに重点を置いており、問題の根本原因である特定のコードセグメントを強調しない。
これらの課題に対処するため,我々は,ジュニアディベロッパがコードを保護する上で,既存の手法の有効性を評価する総合的研究を行った。
5種類のセキュリティ脆弱性を調査した結果、現在のツールによって、脆弱性のあるコードの36.2\%しか確保できなかったことが判明した。
これらの参加者からの質問の結果はさらに、脆弱性の根本原因であるコードを知らないことが、脆弱性のあるコードの修復における主要な課題の1つであることを示唆している。
そこで我々は,脆弱性分類とローカライゼーションのためのグラフ畳み込みネットワーク(GCN)とT5言語モデル埋め込みを組み合わせた,自動脆弱性根本原因(RC)ツールキットT5-RCGCNを開発した。
さらに、脆弱性の根本原因であるコードセグメントを特定するためにDeepLiftSHAPを統合しました。
3つのデータセットで56人のジュニア開発者を対象に、T5-RCGCNをテストしました。
このツールを使用する開発者は、脆弱性の根本原因のより深い理解を得たため、独立してコードを保護する能力が17.0\%向上した。
これらの結果は、即時セキュリティ強化と長期的な開発者スキル向上の両面でのツールの可能性を示している。
関連論文リスト
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Causative Insights into Open Source Software Security using Large
Language Code Embeddings and Semantic Vulnerability Graph [3.623199159688412]
オープンソースソフトウェア(OSS)の脆弱性は、不正アクセス、データ漏洩、ネットワーク障害、プライバシー侵害を引き起こす可能性がある。
最近のディープラーニング技術は、ソースコードの脆弱性を特定し、ローカライズする上で大きな可能性を示しています。
本研究は,従来の方法に比べてコード修復能力が24%向上したことを示す。
論文 参考訳(メタデータ) (2024-01-13T10:33:22Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。