論文の概要: Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs
- arxiv url: http://arxiv.org/abs/2409.00214v1
- Date: Fri, 30 Aug 2024 19:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:18:33.986713
- Title: Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs
- Title(参考訳): LLMのための定義強化ヒューリスティック・プロンプティングによる文書レベルの引数抽出の強化
- Authors: Tongyue Sun, Jiayi Xiao,
- Abstract要約: イベント引数抽出(EAE)は、構造化されていないテキストから構造化された情報を抽出するための重要な手段である。
本研究では,文書レベルEAEにおけるLarge Language Models (LLMs) の性能向上を目的とした定義拡張ヒューリスティック・プロンプト(DHP)手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event Argument Extraction (EAE) is pivotal for extracting structured information from unstructured text, yet it remains challenging due to the complexity of real-world document-level EAE. We propose a novel Definition-augmented Heuristic-driven Prompting (DHP) method to enhance the performance of Large Language Models (LLMs) in document-level EAE. Our method integrates argument extraction-related definitions and heuristic rules to guide the extraction process, reducing error propagation and improving task accuracy. We also employ the Chain-of-Thought (CoT) method to simulate human reasoning, breaking down complex problems into manageable sub-problems. Experiments have shown that our method achieves a certain improvement in performance over existing prompting methods and few-shot supervised learning on document-level EAE datasets. The DHP method enhances the generalization capability of LLMs and reduces reliance on large annotated datasets, offering a novel research perspective for document-level EAE.
- Abstract(参考訳): イベント引数抽出(EAE)は、構造化されていないテキストから構造化された情報を抽出する上で重要であるが、実際の文書レベルのEAEの複雑さのため、依然として困難である。
本研究では,文書レベルEAEにおけるLarge Language Models (LLMs) の性能向上を目的とした定義拡張ヒューリスティック・プロンプト(DHP)手法を提案する。
提案手法は引数抽出関連定義とヒューリスティックルールを統合し,抽出プロセスのガイド,エラー伝搬の低減,タスク精度の向上を実現する。
また、人間の推論をシミュレートするためにChain-of-Thought(CoT)法を使用し、複雑な問題を管理可能なサブプロブレムに分解する。
実験により,本手法は既存のプロンプト手法よりも一定の性能向上を実現し,文書レベルのAEデータセット上での少数ショット教師付き学習を実現していることがわかった。
DHP法はLLMの一般化能力を高め、大きな注釈付きデータセットへの依存を減らし、文書レベルのEAEの新しい研究視点を提供する。
関連論文リスト
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
本稿では,大規模言語モデルと外部ツールとの包括的ギャップを埋めることに焦点を当てる。
ツール文書の動的精錬を目的とした新しいフレームワーク DRAFT を提案する。
複数のデータセットに対する大規模な実験は、DRAFTの反復的なフィードバックベースの改善がドキュメントの品質を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-10-10T17:58:44Z) - Document-Level Event Extraction with Definition-Driven ICL [0.0]
本稿では,DDEE(Definition-driven Document-level Event extract)と呼ばれる最適化手法を提案する。
プロンプトの長さを調整し,プロンプトの明瞭度を高めることにより,大規模言語モデル(LLM)のイベント抽出性能を大幅に改善した。
さらに、構造化手法の導入と厳密な制限条件により、イベントと引数の役割抽出の精度が向上した。
論文 参考訳(メタデータ) (2024-08-10T14:24:09Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
この作業は、イベント抽出を自動化するために、大規模言語モデルを活用することに焦点を当てている。
タスクをイベント検出とイベント引数抽出に分解することで、幻覚に対処する新しい方法が導入された。
論文 参考訳(メタデータ) (2024-06-03T06:55:10Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$は、数発のNERタスクのために、大きな言語モデル(LLM)に基づいた、新しいデータ拡張テクニックである。
提案手法では,14のコンテキスト書き換え戦略を採用し,同一タイプのエンティティ置換を設計し,ロバスト性を高めるためにノイズ注入を導入する。
論文 参考訳(メタデータ) (2024-02-22T14:19:56Z) - Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction [13.245873138716044]
Emotion-Cause Pair extract (ECPE) は、感情とその原因を表す節対を文書で抽出する。
近年の成果から着想を得て,大規模言語モデル(LLM)を活用してECPEタスクに追加のトレーニングを加えることなく対処する方法について検討した。
人間の認知過程を模倣するチェーン・オブ・シントを導入し,Decomposed Emotion-Cause Chain (DECC) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T10:20:01Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
本稿では,Huristic-Driven Link-of-Alogy (HD-LoA)を導入し,サンプル選択の課題に対処する。
人間の類推的推論にインスパイアされ,LLMが新たな状況に対処できるリンク・オブ・アナロジー・プロンプトを提案する。
実験により,本手法は文書レベルのAEデータセット上で,既存のプロンプト手法や数発の教師付き学習手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-11T12:05:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
イベント抽出は、テキストから事前に定義されたイベントトリガと引数を認識することを目的としている。
最近のデータ拡張手法は文法的誤りの問題を無視することが多い。
本稿では,イベント抽出DAEEのための記述構造からテキストへの拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T16:52:07Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。