論文の概要: Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs
- arxiv url: http://arxiv.org/abs/2406.01045v1
- Date: Mon, 3 Jun 2024 06:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 02:08:05.668441
- Title: Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs
- Title(参考訳): LLMを用いたスキーマ対応イベント抽出
- Authors: Fatemeh Shiri, Van Nguyen, Farhad Moghimifar, John Yoo, Gholamreza Haffari, Yuan-Fang Li,
- Abstract要約: この作業は、イベント抽出を自動化するために、大規模言語モデルを活用することに焦点を当てている。
タスクをイベント検出とイベント引数抽出に分解することで、幻覚に対処する新しい方法が導入された。
- 参考スコア(独自算出の注目度): 45.83950260830323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate significant capabilities in processing natural language data, promising efficient knowledge extraction from diverse textual sources to enhance situational awareness and support decision-making. However, concerns arise due to their susceptibility to hallucination, resulting in contextually inaccurate content. This work focuses on harnessing LLMs for automated Event Extraction, introducing a new method to address hallucination by decomposing the task into Event Detection and Event Argument Extraction. Moreover, the proposed method integrates dynamic schema-aware augmented retrieval examples into prompts tailored for each specific inquiry, thereby extending and adapting advanced prompting techniques such as Retrieval-Augmented Generation. Evaluation findings on prominent event extraction benchmarks and results from a synthesized benchmark illustrate the method's superior performance compared to baseline approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語データを処理する上で重要な能力を示し、さまざまなテキストソースから効率的な知識を抽出し、状況認識を高め、意思決定を支援する。
しかし、幻覚への感受性が原因で懸念が生じ、文脈的に不正確な内容が生じる。
この作業は、イベント抽出の自動化にLLMを活用することに焦点を当て、タスクをイベント検出とイベント引数抽出に分解することで幻覚に対処する新しい方法を導入する。
さらに,提案手法では,動的スキーマ対応の拡張検索例を特定の質問に合わせたプロンプトに統合し,検索機能強化生成などの高度なプロンプト技術を拡張し,適応させる。
顕著なイベント抽出ベンチマークの評価結果と、合成されたベンチマークの結果は、ベースラインアプローチと比較して、手法の優れた性能を示している。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs [0.0]
イベント引数抽出(EAE)は、構造化されていないテキストから構造化された情報を抽出するための重要な手段である。
本研究では,文書レベルEAEにおけるLarge Language Models (LLMs) の性能向上を目的とした定義拡張ヒューリスティック・プロンプト(DHP)手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T19:03:14Z) - Document-Level Event Extraction with Definition-Driven ICL [0.0]
本稿では,DDEE(Definition-driven Document-level Event extract)と呼ばれる最適化手法を提案する。
プロンプトの長さを調整し,プロンプトの明瞭度を高めることにより,大規模言語モデル(LLM)のイベント抽出性能を大幅に改善した。
さらに、構造化手法の導入と厳密な制限条件により、イベントと引数の役割抽出の精度が向上した。
論文 参考訳(メタデータ) (2024-08-10T14:24:09Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction [13.245873138716044]
Emotion-Cause Pair extract (ECPE) は、感情とその原因を表す節対を文書で抽出する。
近年の成果から着想を得て,大規模言語モデル(LLM)を活用してECPEタスクに追加のトレーニングを加えることなく対処する方法について検討した。
人間の認知過程を模倣するチェーン・オブ・シントを導入し,Decomposed Emotion-Cause Chain (DECC) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T10:20:01Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
本稿では,Huristic-Driven Link-of-Alogy (HD-LoA)を導入し,サンプル選択の課題に対処する。
人間の類推的推論にインスパイアされ,LLMが新たな状況に対処できるリンク・オブ・アナロジー・プロンプトを提案する。
実験により,本手法は文書レベルのAEデータセット上で,既存のプロンプト手法や数発の教師付き学習手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-11T12:05:01Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
イベント抽出は、テキストから事前に定義されたイベントトリガと引数を認識することを目的としている。
最近のデータ拡張手法は文法的誤りの問題を無視することが多い。
本稿では,イベント抽出DAEEのための記述構造からテキストへの拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T16:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。