論文の概要: Simple stochastic processes behind Menzerath's Law
- arxiv url: http://arxiv.org/abs/2409.00279v1
- Date: Fri, 30 Aug 2024 22:20:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:46:49.820668
- Title: Simple stochastic processes behind Menzerath's Law
- Title(参考訳): Menzerath の法則の単純な確率過程
- Authors: Jiří Milička,
- Abstract要約: 本稿では、メンゼロス法則(メンゼロス・アルトマン法とも呼ばれる)を再検討し、言語構成物の長さと構成物の平均の長さの関係をモデル化する。
近年の研究では、既存のモデルは実世界のデータを正確に反映していないが、単純なプロセスでメンセラート的な振る舞いを表現できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper revisits Menzerath's Law, also known as the Menzerath-Altmann Law, which models a relationship between the length of a linguistic construct and the average length of its constituents. Recent findings indicate that simple stochastic processes can display Menzerathian behaviour, though existing models fail to accurately reflect real-world data. If we adopt the basic principle that a word can change its length in both syllables and phonemes, where the correlation between these variables is not perfect and these changes are of a multiplicative nature, we get bivariate log-normal distribution. The present paper shows, that from this very simple principle, we obtain the classic Altmann model of the Menzerath-Altmann Law. If we model the joint distribution separately and independently from the marginal distributions, we can obtain an even more accurate model by using a Gaussian copula. The models are confronted with empirical data, and alternative approaches are discussed.
- Abstract(参考訳): 本稿では、メンゼロス法則(メンゼロス・アルトマン法とも呼ばれる)を再検討し、言語構成物の長さと構成物の平均の長さの関係をモデル化する。
最近の研究では、単純な確率過程はメンセラート的な振る舞いを示すことができるが、既存のモデルは実世界のデータを正確に反映することができないことが示されている。
もし、単語が音節と音韻の両方で長さを変えるという基本原理を採用すれば、これらの変数間の相関は完璧ではなく、これらの変化が乗法的な性質であるなら、二変量正規分布が得られる。
本稿では、この非常に単純な原理から、メンゼロス=アルトマン法則の古典的なアルトマンモデルを得ることを示す。
境界分布と独立に結合分布をモデル化すれば、ガウスコプラを用いてさらに正確なモデルを得ることができる。
モデルは経験的データと対立し、代替手法について議論する。
関連論文リスト
- A Complete Decomposition of KL Error using Refined Information and Mode Interaction Selection [11.994525728378603]
我々は高次モード相互作用に着目したログ線形モデルの古典的定式化を再考する。
学習した分布は、実際に利用可能な有限量のデータをより効率的に利用することができる。
論文 参考訳(メタデータ) (2024-10-15T18:08:32Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
本稿では,潜在変数のスパース成分への変換を分解し,シーケンスデータから表現を学習することを提案する。
入力データは、まず潜伏活性化の分布として符号化され、その後確率フローモデルを用いて変換される。
論文 参考訳(メタデータ) (2024-10-07T23:53:25Z) - Augmented Bridge Matching [32.668433085737036]
フローとブリッジマッチングのプロセスは、任意のデータ分布の間を補間することができる。
マッチングプロセスの簡単な変更により,速度場を増大させることで,この結合が回復することを示す。
画像翻訳タスクの混合学習における拡張の効率について説明する。
論文 参考訳(メタデータ) (2023-11-12T22:42:34Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - A moment-matching metric for latent variable generative models [0.0]
グッドハートの法則の範囲では、計量が対象となるとき、それは良い計量になるのをやめる。
モーメントに依存するモデル比較や正規化のための新しい指標を提案する。
潜時変動モデルを評価する際に, 適応分布からサンプルを抽出することが一般的である。
論文 参考訳(メタデータ) (2021-10-04T17:51:08Z) - Sparse Communication via Mixed Distributions [29.170302047339174]
我々は「混合確率変数」の理論基盤を構築する。
本フレームワークは,混合確率変数の表現とサンプリングのための2つの戦略を提案する。
我々は、創発的な通信ベンチマークにおいて、両方のアプローチを実験する。
論文 参考訳(メタデータ) (2021-08-05T14:49:03Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
あるデータ分布上のモデルの精度は、別の分布上の精度のほぼ線形関数である。
2つのモデルが予測で一致する確率は、精度レベルだけで推測できるものよりも高いと仮定します。
分布シフトの大きさが大きければ, 2 つの分布のモデルを評価する場合, 線形傾向が生じなければならない。
論文 参考訳(メタデータ) (2020-12-31T07:24:30Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。