論文の概要: Data is missing again -- Reconstruction of power generation data using $k$-Nearest Neighbors and spectral graph theory
- arxiv url: http://arxiv.org/abs/2409.00300v1
- Date: Fri, 30 Aug 2024 23:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:46:49.794780
- Title: Data is missing again -- Reconstruction of power generation data using $k$-Nearest Neighbors and spectral graph theory
- Title(参考訳): データは再び失われる --$k$Nearest Neighborsとスペクトルグラフ理論を用いた発電データの再構成
- Authors: Amandine Pierrot, Pierre Pinson,
- Abstract要約: 本研究では、風力発電の幾何学を用いて、データ駆動の概念と専門家の知識をブレンドする計算手法を提案する。
提案手法は, スペクトルグラフ理論を用いて, ウィンドファームのグラフからラプラシアン固有写像を学習することに依存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The risk of missing data and subsequent incomplete data records at wind farms increases with the number of turbines and sensors. We propose here an imputation method that blends data-driven concepts with expert knowledge, by using the geometry of the wind farm in order to provide better estimates when performing Nearest Neighbor imputation. Our method relies on learning Laplacian eigenmaps out of the graph of the wind farm through spectral graph theory. These learned representations can be based on the wind farm layout only, or additionally account for information provided by collected data. The related weighted graph is allowed to change with time and can be tracked in an online fashion. Application to the Westermost Rough offshore wind farm shows significant improvement over approaches that do not account for the wind farm layout information.
- Abstract(参考訳): 風力発電所における不足データやその後の不完全なデータ記録のリスクは、タービンやセンサーの数の増加とともに増大する。
本稿では,データ駆動型概念と専門家の知識を融合した計算手法を提案する。
提案手法は, スペクトルグラフ理論を用いて, ウィンドファームのグラフからラプラシアン固有写像を学習することに依存する。
これらの学習された表現は、ウィンドファームのレイアウトのみに基づいてもよいし、収集されたデータから提供される情報も考慮できる。
関連する重み付きグラフは時間とともに変更可能で、オンライン形式で追跡することができる。
ウェスタストラフ洋上風力発電への適用は、風力発電のレイアウト情報を考慮しないアプローチよりも大幅に改善されている。
関連論文リスト
- Learning to Optimise Wind Farms with Graph Transformers [6.519940858545459]
提案モデルでは,ウィンドファームを完全連結グラフに符号化し,グラフ変換器を用いてグラフ表現を処理する。
グラフ変換器のサロゲートはよく一般化され、風力発電所のグラフ表現内の潜伏構造パターンを明らかにすることができる。
論文 参考訳(メタデータ) (2023-11-21T17:51:30Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - End-to-end Wind Turbine Wake Modelling with Deep Graph Representation
Learning [7.850747042819504]
本研究は,グラフニューラルネットワークと呼ばれるグラフ表現学習法に基づいて,風力タービンウェイクの表現のための代理モデルを提案する。
提案するエンドツーエンドディープラーニングモデルは、非構造化メッシュ上で直接動作し、高忠実度データに対して検証されている。
実世界の風力発電所に基づくケーススタディでは,提案手法による大規模発電予測の可能性をさらに実証する。
論文 参考訳(メタデータ) (2022-11-24T15:00:06Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Multi Scale Graph Wavenet for Wind Speed Forecasting [0.0]
風速予測のための新しいディープラーニングアーキテクチャであるマルチスケールグラフウェーブネットを提案する。
グラフ畳み込みニューラルネットワークに基づいて、時系列気象データにおける空間的および時間的関係をキャプチャする。
デンマークの異なる都市で観測された実風速データについて実験を行い、その結果を最先端のベースラインモデルと比較した。
論文 参考訳(メタデータ) (2021-09-30T16:18:30Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
エンコーダ・デコーダ構造に基づく深層学習手法を開発した。
本モデルでは,風力タービンが発生した風力を,他のタービンと比較して空間的位置と過去の風速データを用いて予測する。
論文 参考訳(メタデータ) (2021-09-29T16:26:10Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
最適化された機械学習アルゴリズムを用いることで、観測結果に隠れたパターンを見つけ、意味のあるデータを得ることができる。
電力曲線を用いた風力予測におけるパラメトリックモデルと非パラメトリックモデルの利用について検討した。
論文 参考訳(メタデータ) (2021-08-22T17:46:36Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
ファームパーセル・デライン化は、気候変動政策の開発と管理において重要なカダストラルデータを提供する。
このデータは、極端な気象災害に伴う損害後の補償を評価するための農業保険セクターにも有用である。
衛星画像の利用は、農場の区画整理作業を行うためのスケーラブルで費用対効果の高い方法である。
論文 参考訳(メタデータ) (2020-04-11T19:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。