論文の概要: Towards Secure and Usable 3D Assets: A Novel Framework for Automatic Visible Watermarking
- arxiv url: http://arxiv.org/abs/2409.00314v1
- Date: Sat, 31 Aug 2024 00:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:37:00.776934
- Title: Towards Secure and Usable 3D Assets: A Novel Framework for Automatic Visible Watermarking
- Title(参考訳): 安全な3Dアセットを目指して:自動可視な透かしのための新しいフレームワーク
- Authors: Gursimran Singh, Tianxi Hu, Mohammad Akbari, Qiang Tang, Yong Zhang,
- Abstract要約: 3Dモデル(特にAI生成モデル)は、エンターテイメントなどさまざまな業界で最近急増している。
我々は、透かしの品質と資産性という2つの競合する側面から、3D視覚的な透かしを自動化するための新しいタスクを厳格に定義する。
そこで本稿では,任意の3D資産上に配置する適切な位置,向き,個数を自動的に決定する透かしを埋め込む手法を提案する。
- 参考スコア(独自算出の注目度): 11.176240030501184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D models, particularly AI-generated ones, have witnessed a recent surge across various industries such as entertainment. Hence, there is an alarming need to protect the intellectual property and avoid the misuse of these valuable assets. As a viable solution to address these concerns, we rigorously define the novel task of automated 3D visible watermarking in terms of two competing aspects: watermark quality and asset utility. Moreover, we propose a method of embedding visible watermarks that automatically determines the right location, orientation, and number of watermarks to be placed on arbitrary 3D assets for high watermark quality and asset utility. Our method is based on a novel rigid-body optimization that uses back-propagation to automatically learn transforms for ideal watermark placement. In addition, we propose a novel curvature-matching method for fusing the watermark into the 3D model that further improves readability and security. Finally, we provide a detailed experimental analysis on two benchmark 3D datasets validating the superior performance of our approach in comparison to baselines. Code and demo are available.
- Abstract(参考訳): 3Dモデル(特にAI生成モデル)は、エンターテイメントなどさまざまな業界で最近急増している。
したがって、知的財産を保護し、これらの貴重な資産の誤用を避ける必要がある。
これらの問題に対処するための有効なソリューションとして,透かしの品質と有用性という2つの競合する側面の観点から,自動3D透かしの新たなタスクを厳格に定義する。
また, 透かしの適切な位置, 向き, 数を自動的に決定する可視透かしの埋め込み方式を提案する。
提案手法は,バックプロパゲーションを用いて最適なウォーターマーク配置のための変換を自動的に学習する,新しい剛体最適化に基づく。
さらに,透かしを3次元モデルに融合する新しい曲率マッチング手法を提案する。
最後に,2つのベンチマーク3Dデータセットについて,ベースラインと比較して,アプローチの優れた性能を検証した詳細な実験分析を行った。
コードとデモが公開されている。
関連論文リスト
- GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting [41.90891053671943]
デジタル透かし技術は、3DGSモデルに個別に所有権情報を埋め込むために応用できる。
予めトレーニングされた3DGSに透かしを埋め込むと、描画画像に明らかな歪みが生じます。
モデルパラメータの摂動を制限する不確実性に基づく3DGSの透かしを実現する手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T08:08:54Z) - Watermarking Recommender Systems [52.207721219147814]
本稿では,レコメンダシステムに特化した新しい手法であるAutoregressive Out-of-Distribution Watermarking (AOW)を紹介する。
提案手法では,初期項目の選択とオラクルモデルによるクエリを行い,その後に予測スコアの小さい項目を選択する。
透かしの有効性を評価するため、このモデルでは、切り捨てられた透かしシーケンスが与えられた後続の項目を予測することを課題とする。
論文 参考訳(メタデータ) (2024-07-17T06:51:24Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - WAVES: Benchmarking the Robustness of Image Watermarks [67.955140223443]
WAVES(Watermark Analysis Via Enhanced Stress-testing)は、画像透かしの堅牢性を評価するためのベンチマークである。
我々は,検出タスクと識別タスクを統合し,多様なストレステストからなる標準化された評価プロトコルを確立する。
我々はWAVESを,ロバストな透かしの将来の開発のためのツールキットとして想定する。
論文 参考訳(メタデータ) (2024-01-16T18:58:36Z) - TrustMark: Universal Watermarking for Arbitrary Resolution Images [21.74309490023683]
非受容性デジタル透かしは著作権保護、誤情報防止および責任ある生成GANにおいて重要である。
本稿では,新しい設計のアーキテクチャを用いたGANベースの透かし手法を提案し,透かし除去法であるTrustMark-RMを提案する。
本手法は任意の符号化画像からなる3つのベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-30T07:03:36Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
本稿では,人間の直感的な評価を目的とした最初のDNN透かし手法であるClearMarkを紹介する。
ClearMarkは目に見える透かしを埋め込んで、厳格な値閾値なしで人間の意思決定を可能にする。
8,544ビットの透かし容量は、現存する最強の作品に匹敵する。
論文 参考訳(メタデータ) (2023-10-25T08:16:55Z) - MarkNerf:Watermarking for Neural Radiance Field [6.29495604869364]
暗黙的な3Dモデルの著作権保護問題に対処するために,透かしアルゴリズムを提案する。
実験により,提案アルゴリズムは3次元モデルの著作権を効果的に保護することを示した。
論文 参考訳(メタデータ) (2023-09-21T03:00:09Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
バックドアベースのオーナシップ検証が最近人気となり,モデルオーナがモデルをウォーターマークすることが可能になった。
本研究では,これらの透かし除去モデルを発見し,それらの透かし挙動を復元するミニマックス定式化を提案する。
本手法は,パラメトリックな変化と多数のウォーターマーク除去攻撃に対するモデル透かしの堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-09-09T12:46:08Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation
with Secret Key [15.483078145498085]
提案手法は学習可能な変換画像を用いてモデルに透かしパターンを埋め込む。
海賊に耐性があるため、元のウォーターマークは海賊版ウォーターマークでは上書きできない。
その結果,高い透かし検出精度を維持しつつ,微調整や刈り込み攻撃に対して弾力性を示した。
論文 参考訳(メタデータ) (2021-04-09T08:21:53Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。