Differentially Private Synthetic High-dimensional Tabular Stream
- URL: http://arxiv.org/abs/2409.00322v1
- Date: Sat, 31 Aug 2024 01:31:59 GMT
- Title: Differentially Private Synthetic High-dimensional Tabular Stream
- Authors: Girish Kumar, Thomas Strohmer, Roman Vershynin,
- Abstract summary: We propose an algorithmic framework for streaming data that generates multiple synthetic datasets over time.
Our algorithm satisfies differential privacy for the entire input stream.
We show the utility of our method via experiments on real-world datasets.
- Score: 7.726042106665366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While differentially private synthetic data generation has been explored extensively in the literature, how to update this data in the future if the underlying private data changes is much less understood. We propose an algorithmic framework for streaming data that generates multiple synthetic datasets over time, tracking changes in the underlying private data. Our algorithm satisfies differential privacy for the entire input stream (continual differential privacy) and can be used for high-dimensional tabular data. Furthermore, we show the utility of our method via experiments on real-world datasets. The proposed algorithm builds upon a popular select, measure, fit, and iterate paradigm (used by offline synthetic data generation algorithms) and private counters for streams.
Related papers
- An Algorithm for Streaming Differentially Private Data [7.726042106665366]
We derive an algorithm for differentially private synthetic streaming data generation, especially curated towards spatial datasets.
The utility of our algorithm is verified on both real-world and simulated datasets.
arXiv Detail & Related papers (2024-01-26T00:32:31Z) - Practical considerations on using private sampling for synthetic data [1.3654846342364308]
Differential privacy for synthetic data generation has received much attention due to the ability of preserving privacy while freely using the synthetic data.
Private sampling is the first noise-free method to construct differentially private synthetic data with rigorous bounds for privacy and accuracy.
We provide an implementation of the private sampling algorithm and discuss the realism of its constraints in practical cases.
arXiv Detail & Related papers (2023-12-12T10:20:04Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Differentially Private Synthetic Data Using KD-Trees [11.96971298978997]
We exploit space partitioning techniques together with noise perturbation and thus achieve intuitive and transparent algorithms.
We propose both data independent and data dependent algorithms for $epsilon$-differentially private synthetic data generation.
We show empirical utility improvements over the prior work, and discuss performance of our algorithm on a downstream classification task on a real dataset.
arXiv Detail & Related papers (2023-06-19T17:08:32Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Differentially Private Algorithms for Synthetic Power System Datasets [0.0]
Power systems research relies on the availability of real-world network datasets.
Data owners are hesitant to share data due to security and privacy risks.
We develop privacy-preserving algorithms for the synthetic generation of optimization and machine learning datasets.
arXiv Detail & Related papers (2023-03-20T13:38:58Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
We introduce a novel approach for solving dataset condensation problem by exploiting the regularity in a given dataset.
Instead of condensing the dataset directly in the original input space, we assume a generative process of the dataset with a set of learnable codes.
We experimentally show that our method achieves new state-of-the-art records by significant margins on various benchmark datasets.
arXiv Detail & Related papers (2022-08-21T18:14:08Z) - Anonymizing Sensor Data on the Edge: A Representation Learning and
Transformation Approach [4.920145245773581]
In this paper, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation.
We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data.
We show that it can anonymize data in real time on resource-constrained edge devices.
arXiv Detail & Related papers (2020-11-16T22:32:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.