Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations
- URL: http://arxiv.org/abs/2307.03678v1
- Date: Wed, 5 Jul 2023 03:50:08 GMT
- Title: Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations
- Authors: Yuhan Ji, Song Gao
- Abstract summary: This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations.
We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors.
Experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects.
- Score: 2.8935588665357086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research focuses on assessing the ability of large language models
(LLMs) in representing geometries and their spatial relations. We utilize LLMs
including GPT-2 and BERT to encode the well-known text (WKT) format of
geometries and then feed their embeddings into classifiers and regressors to
evaluate the effectiveness of the LLMs-generated embeddings for geometric
attributes. The experiments demonstrate that while the LLMs-generated
embeddings can preserve geometry types and capture some spatial relations (up
to 73% accuracy), challenges remain in estimating numeric values and retrieving
spatially related objects. This research highlights the need for improvement in
terms of capturing the nuances and complexities of the underlying geospatial
data and integrating domain knowledge to support various GeoAI applications
using foundation models.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Navigate Complex Physical Worlds via Geometrically Constrained LLM [10.89488333922071]
The study introduces a set of geometric conventions and develops a workflow based on multi-layer graphs and multi-agent system frameworks.
The study employs a genetic algorithm, inspired by large-scale model knowledge, to solve geometric constraint problems.
arXiv Detail & Related papers (2024-10-23T03:14:07Z) - Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds [18.156807299614503]
We introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines manifold learning with generative modeling.
GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
arXiv Detail & Related papers (2024-10-16T17:53:26Z) - Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories [1.3658544194443192]
This research focuses on assessing the ability of AI foundation models in representing the trajectories of movements.
We utilize one of the large language models (LLMs) to encode the string format of trajectories and then evaluate the effectiveness of the LLM-based representation for trajectory data analysis.
arXiv Detail & Related papers (2024-08-31T02:57:25Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - Are Large Language Models Geospatially Knowledgeable? [21.401931052512595]
This paper investigates the extent of geospatial knowledge, awareness, and reasoning abilities encoded within Large Language Models (LLM)
With a focus on autoregressive language models, we devise experimental approaches related to (i) probing LLMs for geo-coordinates to assess geospatial knowledge, (ii) using geospatial and non-geospatial prepositions to gauge their geospatial awareness, and (iii) utilizing a multidimensional scaling (MDS) experiment to assess the models' geospatial reasoning capabilities.
arXiv Detail & Related papers (2023-10-09T17:20:11Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - GeomCA: Geometric Evaluation of Data Representations [21.83249229426828]
We present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties.
We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.
arXiv Detail & Related papers (2021-05-26T11:41:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.