A Hybrid Transformer-Mamba Network for Single Image Deraining
- URL: http://arxiv.org/abs/2409.00410v1
- Date: Sat, 31 Aug 2024 10:03:19 GMT
- Title: A Hybrid Transformer-Mamba Network for Single Image Deraining
- Authors: Shangquan Sun, Wenqi Ren, Juxiang Zhou, Jianhou Gan, Rui Wang, Xiaochun Cao,
- Abstract summary: Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
- Score: 70.64069487982916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions, limiting the exploitation of non-local receptive fields. In response to this issue, we introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies. Based on the prior of distinct spectral-domain features of rain degradation and background, we design a spectral-banded Transformer blocks on the first branch. Self-attention is executed within the combination of the spectral-domain channel dimension to improve the ability of modeling long-range dependencies. To enhance frequency-specific information, we present a spectral enhanced feed-forward module that aggregates features in the spectral domain. In the second branch, Mamba layers are equipped with cascaded bidirectional state space model modules to additionally capture the modeling of both local and global information. At each stage of both the encoder and decoder, we perform channel-wise concatenation of dual-branch features and achieve feature fusion through channel reduction, enabling more effective integration of the multi-scale information from the Transformer and Mamba branches. To better reconstruct innate signal-level relations within clean images, we also develop a spectral coherence loss. Extensive experiments on diverse datasets and real-world images demonstrate the superiority of our method compared against the state-of-the-art approaches.
Related papers
- TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
We propose a novel Transformer model, Dual Aggregation Transformer, for image SR.
Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner.
Our experiments show that our DAT surpasses current methods.
arXiv Detail & Related papers (2023-08-07T07:39:39Z) - Enhancing Medical Image Segmentation with TransCeption: A Multi-Scale
Feature Fusion Approach [3.9548535445908928]
CNN-based methods have been the cornerstone of medical image segmentation due to their promising performance and robustness.
Transformer-based approaches are currently prevailing since they enlarge the reception field to model global contextual correlation.
We propose TransCeption for medical image segmentation, a pure transformer-based U-shape network featured by incorporating the inception-like module into the encoder.
arXiv Detail & Related papers (2023-01-25T22:09:07Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.