論文の概要: Learning linear acyclic causal model including Gaussian noise using ancestral relationships
- arxiv url: http://arxiv.org/abs/2409.00417v1
- Date: Sat, 31 Aug 2024 11:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 14:49:38.628005
- Title: Learning linear acyclic causal model including Gaussian noise using ancestral relationships
- Title(参考訳): 祖先関係を用いたガウス雑音を含む線形非循環因果モデル学習
- Authors: Ming Cai, Penggang Gao, Hisayuki Hara,
- Abstract要約: LiNGAMは因果モデルに対して線形性と連続的な非ガウス的障害を仮定する。
PCアルゴリズムは因果モデルへの忠実性以外の仮定をしない。
本稿では,線形因果モデルの分布等価パターンを低時間で学習するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.340689966560241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses algorithms for learning causal DAGs. The PC algorithm makes no assumptions other than the faithfulness to the causal model and can identify only up to the Markov equivalence class. LiNGAM assumes linearity and continuous non-Gaussian disturbances for the causal model, and the causal DAG defining LiNGAM is shown to be fully identifiable. The PC-LiNGAM, a hybrid of the PC algorithm and LiNGAM, can identify up to the distribution-equivalence pattern of a linear causal model, even in the presence of Gaussian disturbances. However, in the worst case, the PC-LiNGAM has factorial time complexity for the number of variables. In this paper, we propose an algorithm for learning the distribution-equivalence patterns of a linear causal model with a lower time complexity than PC-LiNGAM, using the causal ancestor finding algorithm in Maeda and Shimizu, which is generalized to account for Gaussian disturbances.
- Abstract(参考訳): 本稿では因果DAGの学習アルゴリズムについて述べる。
PCアルゴリズムは因果モデルへの忠実性以外の仮定は行わず、マルコフ同値クラスまでしか特定できない。
LiNGAMは因果モデルに対して線形性および連続的な非ガウス的障害を仮定し、LiNGAMを定義する因果DAGは完全に同定可能である。
PCアルゴリズムとLiNGAMのハイブリッドであるPC-LiNGAMは、ガウス乱があっても線形因果モデルの分布等価パターンを識別できる。
しかし、最悪の場合、PC-LiNGAMは変数の数に対して決定的な時間的複雑さを持つ。
本稿では,PC-LiNGAMよりも低時間で線形因果モデルの分布等価パターンを学習するためのアルゴリズムを提案する。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - On the Complexity of Identification in Linear Structural Causal Models [3.44747819522562]
空間内で動作するジェネリック識別のための,新しい音響および完全アルゴリズムを提案する。
また,同定が一般に困難であることを示す。
論文 参考訳(メタデータ) (2024-07-17T13:11:26Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
関数因果モデルに基づく手法は、ユニークなグラフを識別することができるが、次元性の呪いや強いパラメトリックな仮定を課すことに苦しむ。
本研究では,局所的な因果構造を利用した観測データにおけるグローバル因果発見のための新しいハイブリッド手法を提案する。
我々は, 合成データに対する実証的な検証を行い, 正確性および最悪の場合の時間複雑度を理論的に保証する。
論文 参考訳(メタデータ) (2024-05-23T12:28:16Z) - TSLiNGAM: DirectLiNGAM under heavy tails [0.0]
本研究では、観測データに基づく因果モデルのDAGを同定する新しい手法TSLiNGAMを提案する。
TSLiNGAMは、変数間の因果方向を識別するために単純なOLS回帰を利用する人気アルゴリズムであるDirectLiNGAMをベースにしている。
重み付きおよび歪んだデータに対して著しく優れた性能を示し、より小さなサンプル効率を示す。
論文 参考訳(メタデータ) (2023-08-10T08:34:46Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
因果発見法は、構造識別可能性を保証するために必要な仮定のセットによって本質的に制約される。
本稿では,雑音項のガウス性に反するエッジ反転のリスクを解析し,この仮説の下での推論の欠点を示す。
本稿では,一般的な雑音分布を持つ付加非線形モデルに基づいて生成されたデータから,因果グラフ内の変数の位相的順序付けを推定する新しい手法を提案する。
これは、最小限の仮定と、合成データに基づいて実験的にベンチマークされた技術性能の状態を持つ因果探索アルゴリズムであるNoGAMに繋がる。
論文 参考訳(メタデータ) (2023-04-06T17:50:46Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Sequential Learning of the Topological Ordering for the Linear
Non-Gaussian Acyclic Model with Parametric Noise [6.866717993664787]
我々はDAGの因果順序を推定するための新しい逐次的アプローチを開発する。
数千のノードを持つケースに対して,我々の手順がスケーラブルであることを示すための,広範な数値的証拠を提供する。
論文 参考訳(メタデータ) (2022-02-03T18:15:48Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。