論文の概要: Evaluation of Prosumer Networks for Peak Load Management in Iran: A Distributed Contextual Stochastic Optimization Approach
- arxiv url: http://arxiv.org/abs/2409.00493v1
- Date: Sat, 31 Aug 2024 16:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 14:39:09.380731
- Title: Evaluation of Prosumer Networks for Peak Load Management in Iran: A Distributed Contextual Stochastic Optimization Approach
- Title(参考訳): イランにおけるピーク負荷管理のためのプロシューマーネットワークの評価:分散文脈確率最適化アプローチ
- Authors: Amir Noori, Babak Tavassoli, Alireza Fereidunian,
- Abstract要約: 本稿では,イランにおけるピーク負荷軽減を目的とした新しいプロシューマーネットワークフレームワークを提案する。
コスト指向の統合予測と最適化手法を提案する。
数値的な結果から,最適化とコンテキスト情報共有ネットワークの実装による予測の統合は,ピーク負荷と総コストを著しく削減することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Renewable prosumers face the complex challenge of balancing self-sufficiency with seamless grid and market integration. This paper introduces a novel prosumers network framework aimed at mitigating peak loads in Iran, particularly under the uncertainties inherent in renewable energy generation and demand. A cost-oriented integrated prediction and optimization approach is proposed, empowering prosumers to make informed decisions within a distributed contextual stochastic optimization (DCSO) framework. The problem is formulated as a bi-level two-stage multi-time scale optimization to determine optimal operation and interaction strategies under various scenarios, considering flexible resources. To facilitate grid integration, a novel consensus-based contextual information sharing mechanism is proposed. This approach enables coordinated collective behaviors and leverages contextual data more effectively. The overall problem is recast as a mixed-integer linear program (MILP) by incorporating optimality conditions and linearizing complementarity constraints. Additionally, a distributed algorithm using the consensus alternating direction method of multipliers (ADMM) is presented for computational tractability and privacy preservation. Numerical results highlights that integrating prediction with optimization and implementing a contextual information-sharing network among prosumers significantly reduces peak loads as well as total costs.
- Abstract(参考訳): 更新可能なプロシューマーは、シームレスなグリッドと市場統合で自己充足性のバランスをとるという複雑な課題に直面します。
本稿では,イランにおけるピーク負荷の軽減を目的とした,再生可能エネルギーの発生と需要に固有の不確実性の下での新規プロシューマーネットワークフレームワークを提案する。
分散文脈確率最適化(DCSO)フレームワークにおいて,コスト指向の統合予測と最適化手法を提案する。
この問題は、柔軟な資源を考慮して、様々なシナリオ下での最適操作と相互作用戦略を決定するために、2段階の2段階のマルチタイムスケール最適化として定式化されている。
グリッド統合を容易にするために,新しいコンセンサスに基づくコンテキスト情報共有機構を提案する。
このアプローチは、協調した集合行動を可能にし、文脈データをより効果的に活用する。
全体的な問題は、最適条件を取り入れ、相補性制約を線形化する混合整数線形プログラム(MILP)として再キャストされる。
さらに,乗算器のコンセンサス交互方向法(ADMM)を用いた分散アルゴリズムを,計算的トラクタビリティとプライバシ保護のために提案する。
数値的な結果から,最適化とコンテキスト情報共有ネットワークの実装による予測の統合は,ピーク負荷と総コストを著しく削減することがわかった。
関連論文リスト
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Applying Multi-Agent Negotiation to Solve the Production Routing Problem With Privacy Preserving [0.7373617024876724]
実業界アプリケーションにおける生産、在庫、流通、ルーティング決定の統合最適化は、いくつかの課題を提起する。
本稿では,最適化アルゴリズムと統合されたハイブリッドマルチエージェントシステム(MAS)におけるインテリジェントエージェントネゴシエーションの利用を提案する。
論文 参考訳(メタデータ) (2024-06-13T15:15:34Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
本稿では,対戦型マルチエージェントRLの最も基本的な設定,すなわち2プレーヤゼロサムマルコフゲームに焦点を当てる。
両エージェントから対称更新を施した単一ループポリシー最適化手法を提案し,この手法はエントロピー規則化楽観的乗算重み更新法(OMWU)によって更新される。
我々の収束結果は、最もよく知られた複雑性を改善し、競合するマルコフゲームにおけるポリシー最適化をよりよく理解する。
論文 参考訳(メタデータ) (2022-10-03T16:05:43Z) - Distributed Stochastic Bandit Learning with Context Distributions [0.0]
本研究では,未知のコンテキストを持つ分散マルチアームコンテキスト帯域幅の問題について検討する。
本モデルでは, エージェントはコンテキスト分布のみを観察し, エージェントに正確なコンテキストが不明である。
我々のゴールは、累積報酬を最大化するために最適な行動列を選択する分散アルゴリズムを開発することである。
論文 参考訳(メタデータ) (2022-07-28T22:00:11Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
エージェントは、そのコストに対する複数の制約により、期待される累積割引報酬を最大化することを目的としている。
エントロピー正規化ポリシーとベイダの二重化という2つの要素を統合した新しい双対アプローチが提案されている。
提案手法は(線形速度で)大域的最適値に収束することが示されている。
論文 参考訳(メタデータ) (2022-06-03T16:26:38Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
本稿では,逐次情報設計の新たなモデル,すなわちマルコフ説得過程(MPP)を提案する。
MPPのプランニングは、ミオピックレシーバーに同時に説得されるシグナルポリシーを見つけ、送信者の最適な長期累積ユーティリティを誘導する、というユニークな課題に直面している。
我々は,楽観主義と悲観主義の両原理の新たな組み合わせを特徴とする,実証可能な効率のよい非回帰学習アルゴリズム,Optimism-Pessimism Principle for Persuasion Process (OP4) を設計する。
論文 参考訳(メタデータ) (2022-02-22T05:41:43Z) - Sparse Optimization for Green Edge AI Inference [28.048770388766716]
エネルギー効率の良いエッジAI推論を実現するために,共同推論タスク選択とダウンリンクビームフォーミング戦略を提案する。
タスク選択の集合とグループ間隔送信ビームフォーミングベクトルとの固有の接続を利用して、グループスパースビームフォーミング問題として最適化を再構成する。
我々は,グローバル収束解析を確立し,このアルゴリズムのエルゴード最悪の収束率を提供する。
論文 参考訳(メタデータ) (2020-02-24T05:21:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。