論文の概要: Sparse Mamba: Reinforcing Controllability In Structural State Space Models
- arxiv url: http://arxiv.org/abs/2409.00563v2
- Date: Sun, 20 Oct 2024 00:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 03:46:24.922325
- Title: Sparse Mamba: Reinforcing Controllability In Structural State Space Models
- Title(参考訳): Sparse Mamba: 構造状態空間モデルにおける制御性の強化
- Authors: Emadeldeen Hamdan, Hongyi Pan, Ahmet Enis Cetin,
- Abstract要約: 我々は,自然言語処理(NLP)アプリケーションのためのSparse-Mamba(S-Mamba)において,制御可能性と可観測性の概念をMamba SSMのアーキテクチャに導入する。
- 参考スコア(独自算出の注目度): 2.6353853440763118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce the concept of controllability and observability to the Mamba SSM's architecture in our Sparse-Mamba (S-Mamba) for natural language processing (NLP) applications. The structured state space model (SSM) development in recent studies, such as Mamba and Mamba2, outperformed and solved the computational inefficiency of transformers and large language models at small to medium scale. The Mamba SSMs architecture drops the need for attention layers or multilayer perception blocks in transformers. However, current Mamba models lack reinforcement of controllability in state-space equations for computing the $A$, $B$, $C$, and $D$ matrices at each time step, leading to increased complexity and computational costs. In this paper, we demonstrate a reduction of parameters in comparison to the first published Mamba and Mamba2. We showcase an improvement in perplexity by 5\% and a decrease in training time by 3\% after reinforcing controllability and observability on the original Mamba architecture in our proposed S-Mamba. The controllable $n \times n$ state matrix $A$ is sparse and it has only $n$ free parameters. Our novel approach will ensure a controllable system which will be the gate key for Mamba3.
- Abstract(参考訳): 本研究では,自然言語処理(NLP)アプリケーションのためのSparse-Mamba(S-Mamba)において,制御可能性と可観測性の概念を,Mamba SSMのアーキテクチャに適用する。
Mamba や Mamba2 のような最近の研究における構造化状態空間モデル(SSM)の開発は、トランスフォーマーや大規模言語モデルの小型・中規模での計算非効率性より優れ、解決された。
Mamba SSMsアーキテクチャは、トランスフォーマーの注意層や多層認識ブロックの必要性を減らしている。
しかしながら、現在のMambaモデルは、A$、B$、C$およびD$の行列を計算するための状態空間方程式における制御可能性の強化を欠いているため、複雑さと計算コストが増大する。
本稿では,最初に公開されたMambaとMamba2と比較してパラメータの減少を示す。
提案したS-マンバにおけるマンバアーキテクチャの可制御性と可観測性を強化した上で, パープレキシティを5 %改善し, トレーニング時間を3 %短縮した。
制御可能な$n \times n$ state matrix $A$はスパースであり、$n$freeパラメータしか持たない。
我々の新しいアプローチは、Mamba3のゲートキーとなる制御可能なシステムを保証するでしょう。
関連論文リスト
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - Bi-Mamba: Towards Accurate 1-Bit State Space Models [28.478762133816726]
Bi-Mambaは、より効率的な大規模言語モデルのために設計されたスケーラブルでパワフルな1ビットのMambaアーキテクチャである。
Bi-Mambaは完全な精度(FP16やBF16など)に匹敵するパフォーマンスを実現し、ポストトレーニングバイナリ化(PTB)のMambaベースラインよりもはるかに精度が高い。
論文 参考訳(メタデータ) (2024-11-18T18:59:15Z) - Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models [92.36510016591782]
本稿では,事前学習したトランスフォーマーアーキテクチャを,状態空間モデル(SSM)などの代替アーキテクチャに蒸留する手法を提案する。
提案手法はMOHAWKと呼ばれ、3Bトークンと5Bトークンを用いたハイブリッドバージョン(Hybrid Phi-Mamba)を用いてPhi-1.5アーキテクチャに基づくMamba-2変異体を蒸留することができる。
Phi-Mambaは、スクラッチからモデルのトレーニングに使用されるトレーニングデータの1%未満を使用してはいるが、過去のオープンソース非トランスフォーマーモデルと比較して、大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-08-19T17:48:11Z) - MambaMIM: Pre-training Mamba with State Space Token-interpolation [14.343466340528687]
選択構造状態空間補間(S6T)に基づくMamba(MambaMIM)の自己教師型学習手法を提案する。
MambaMIMは、Mambaの長距離表現能力を向上するために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
論文 参考訳(メタデータ) (2024-08-15T10:35:26Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
ディープニューラルネットワークアーキテクチャであるTransformerは、長年、自然言語処理などの分野を支配してきた。
マンバの最近の導入は、その優位性に挑戦し、研究者の間でかなりの関心を喚起し、マンバをベースとした一連のモデルが顕著な可能性を示している。
本研究は,総合的な議論をまとめ,本質的な研究の側面に潜り込み,(1)構造的状態空間モデルの原理に基づくマンバ機構の機能とその基盤,(2)提案されたマンバの様々なネットワークへの統合,(3)トランスフォーマーの代替としての可能性を探る。
論文 参考訳(メタデータ) (2024-06-24T15:27:21Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Mambaのような選択的な状態空間モデル(SSM)はトランスフォーマーの欠点を克服する。
同じデータセット上で訓練された8B-context Mamba, Mamba-2, Transformer モデルを直接比較する。
8BのMamba-2-Hybridは、12の標準タスクで8BのTransformerを上回っている。
論文 参考訳(メタデータ) (2024-06-12T05:25:15Z) - Mamba State-Space Models Are Lyapunov-Stable Learners [1.6385815610837167]
Mamba State-space Model (SSM) は、最近様々なタスクでTransformer Large Language Model (LLM) より優れていることが示されている。
我々は,Mambaのリカレントダイナミクスが小さな入力変化に対して堅牢であることを示す。
また、命令チューニングにより、Mambaモデルはこのギャップを81%に、Mamba-2モデルはこのギャップを132%に制限できることを示す。
論文 参考訳(メタデータ) (2024-05-31T21:46:23Z) - ZigMa: A DiT-style Zigzag Mamba Diffusion Model [22.68317748373856]
我々は、Mambaと呼ばれる状態空間モデルの長いシーケンスモデリング機能を活用し、その視覚データ生成への適用性を高めることを目指している。
我々は,Zigzag Mamba という,シンプルな,プラグアンドプレイのゼロパラメータ法を導入し,Mamba ベースのベースラインを上回ります。
Zigzag Mamba と Interpolant フレームワークを統合し,大規模なビジュアルデータセット上でのモデルのスケーラビリティについて検討する。
論文 参考訳(メタデータ) (2024-03-20T17:59:14Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。
MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。
我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
論文 参考訳(メタデータ) (2024-02-01T07:15:58Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
マンババイト(英: MambaByte)は、マンバSSMがバイト配列で自己回帰的に訓練したトークンレス適応である。
MambaByteは、言語モデリングタスクにおいて、最先端のサブワードトランスフォーマーよりも優れています。
論文 参考訳(メタデータ) (2024-01-24T18:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。