論文の概要: MambaMIM: Pre-training Mamba with State Space Token-interpolation
- arxiv url: http://arxiv.org/abs/2408.08070v1
- Date: Thu, 15 Aug 2024 10:35:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:16:19.016090
- Title: MambaMIM: Pre-training Mamba with State Space Token-interpolation
- Title(参考訳): マンバミム:国家空間トーケン補間によるプレトレーニングマンバ
- Authors: Fenghe Tang, Bingkun Nian, Yingtai Li, Jie Yang, Liu Wei, S. Kevin Zhou,
- Abstract要約: 選択構造状態空間補間(S6T)に基づくMamba(MambaMIM)の自己教師型学習手法を提案する。
MambaMIMは、Mambaの長距離表現能力を向上するために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
- 参考スコア(独自算出の注目度): 14.343466340528687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative self-supervised learning demonstrates outstanding representation learning capabilities in both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). However, there are currently no generative pre-training methods related to selective state space models (Mamba) that can handle long-range dependencies effectively. To address this challenge, we introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T), a general-purpose pre-training method for arbitrary Mamba architectures. Our method, MambaMIM, incorporates a bottom-up 3D hybrid masking strategy in the encoder to maintain masking consistency across different architectures. Additionally, S6T is employed to learn causal relationships between the masked sequence in the state space. MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for pre-training medical image tasks. The code is available at: https://github.com/FengheTan9/MambaMIM
- Abstract(参考訳): 生成的自己教師型学習は、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)の両方において、卓越した表現学習能力を示す。
しかし、現在、長距離依存を効果的に扱える選択状態空間モデル(Mamba)に関連する生成事前学習手法は存在しない。
この課題に対処するために,任意のマンバアーキテクチャのための汎用事前学習手法であるS6T(Selective Structure State Space Sequence Token-interpolation)に基づく,マンバ(MambaMIM)の自己教師型学習手法を提案する。
本手法は,エンコーダにボトムアップ型3Dハイブリットマスキング戦略を組み込んで,異なるアーキテクチャ間のマスキング一貫性を維持する。
さらに、S6Tは状態空間におけるマスク配列間の因果関係を学習するために用いられる。
MambaMIMは、Mambaの長距離表現能力を向上するために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
広範囲な下流実験は、医療画像タスクの事前訓練にMambaを使用することの可能性と進歩を明らかにしている。
コードは、https://github.com/FengheTan9/MambaMIMで入手できる。
関連論文リスト
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - MAP: Unleashing Hybrid Mamba-Transformer Vision Backbone's Potential with Masked Autoregressive Pretraining [23.37555991996508]
本稿では,Masked Autoregressive Pretraining (MAP) を提案する。
MAPで事前学習したMambaアーキテクチャとハイブリッドMamba-Transformerビジョンバックボーンネットワークが,他の事前学習戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-01T17:05:08Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
本研究では,マンバに特化して設計された文脈拡張手法であるDeciMambaを紹介する。
DeciMambaは、トレーニング中に見たものよりも25倍長く、余分な計算資源を使わずに、コンテキスト長を外挿できることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:40:18Z) - MambaOut: Do We Really Need Mamba for Vision? [70.60495392198686]
状態空間モデル(SSM)のRNNライクなトークンミキサーを備えたアーキテクチャであるMambaが最近導入され、注意機構の2次複雑さに対処した。
本論文は,マンバが長周期および自己回帰特性を有するタスクに理想的に適していることを概念的に結論づける。
我々は,コアトークンミキサーであるSSMを除去しながら,Mambaブロックを積み重ねることで,MambaOutという名前の一連のモデルを構築する。
論文 参考訳(メタデータ) (2024-05-13T17:59:56Z) - Vision Mamba: A Comprehensive Survey and Taxonomy [11.025533218561284]
状態空間モデル (State Space Model, SSM) は、動的システムの振る舞いを記述・解析するために用いられる数学的モデルである。
最新の状態空間モデルに基づいて、Mambaは時間変化パラメータをSSMにマージし、効率的なトレーニングと推論のためのハードウェア認識アルゴリズムを定式化する。
Mambaは、Transformerを上回る可能性のある、新たなAIアーキテクチャになることが期待されている。
論文 参考訳(メタデータ) (2024-05-07T15:30:14Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
最近の選択的構造化状態空間モデルであるMambaは、ロングシーケンスモデリングにおいて優れている。
2024年1月以降、マンバは多様なコンピュータビジョンタスクに積極的に適用されてきた。
本稿では,200以上の論文を分析し,マンバの視覚的アプローチを概観する。
論文 参考訳(メタデータ) (2024-04-29T16:51:30Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamberは、マルチモーダルなMamba TwisterブロックとMambaのパワーを統合する新しいRISアーキテクチャである。
Mamba Twisterは画像とテキストのインタラクションを明示的にモデル化し、独自のチャネルと空間的ツイスト機構を通じてテキストと視覚的特徴を融合する。
論文 参考訳(メタデータ) (2024-03-26T16:27:37Z) - MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology [10.933433327636918]
MIL(Multiple Instance Learning)は、WSI(Whole Slide Images)内の識別的特徴表現を計算病理学で抽出する主要なパラダイムとして登場した。
本稿では,線形複雑度を持つ長周期モデリングのために,Selective Scan Space State Sequential Model(Mamba)をMIL(Multiple Instance Learning)に組み込む。
提案するフレームワークは,最先端のMIL手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-03-11T15:17:25Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。