論文の概要: Sparse Mamba: Introducing Controllability, Observability, And Stability To Structural State Space Models
- arxiv url: http://arxiv.org/abs/2409.00563v3
- Date: Sat, 09 Nov 2024 15:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:10.083121
- Title: Sparse Mamba: Introducing Controllability, Observability, And Stability To Structural State Space Models
- Title(参考訳): Sparse Mamba: 構造的状態空間モデルに対する可制御性,可観測性,安定性の導入
- Authors: Emadeldeen Hamdan, Hongyi Pan, Ahmet Enis Cetin,
- Abstract要約: 提案するS-Mambaにおいて,元のMamba SSMアーキテクチャに可制御性と可観測性の概念を導入する。
従来のMambaアーキテクチャの可制御性と可観測性を強化した上で, 難易度を5%改善し, トレーニング時間を3%短縮した。
- 参考スコア(独自算出の注目度): 2.6353853440763118
- License:
- Abstract: Structured state space models' (SSMs) development in recent studies, such as Mamba and Mamba2, outperformed and solved the computational inefficiency of transformers and large language models at small to medium scale. In this work, we introduce the concept of controllability and observability to the original Mamba SSM's architecture in our Sparse-Mamba (S-Mamba) for natural language processing (NLP) applications. Moreover, we reinforce stability on the $nxn$ $A$ matrix on Mmaba2. The Mamba SSMs architecture drops the need for attention layers or multilayer perception blocks in transformers. However, current Mamba models lack reinforcement of controllability in state-space equations for computing the $A$, $B$, $C$, and $D$ matrices at each time step, leading to increased complexity and computational costs. Furthermore, the $A$ matrix in Mamba2 is not always stable. We demonstrate a reduction of parameters compared to the first published Mamba and Mamba2. We showcase an improvement in perplexity by 5\% and a decrease in training time by 3\% after reinforcing controllability and observability on the original Mamba architecture in our proposed S-Mamba. We further enforce stability on the $A$ matrix in Mamba2 to improve the loss and perplexity of the model. The controllable and stable $n \times n$ state matrix $A$ is sparse, and it has only $n$ free parameters. Our novel approach will ensure controllable/observable and stable SSMs, which will be the gate key for Mamba3.
- Abstract(参考訳): 構造化状態空間モデル (Structured State Space Model, SSMs) は、Mamba や Mamba2 などの最近の研究において、トランスフォーマーや大規模言語モデルの小型・中規模での計算非効率性より優れ、解決された。
本研究では,自然言語処理(NLP)アプリケーションのためのSparse-Mamba(S-Mamba)において,元のMamba SSMアーキテクチャの可制御性と可観測性の概念を紹介する。
さらに、Mmaba2 上の $nxn$$A$ 行列の安定性を強化する。
Mamba SSMsアーキテクチャは、トランスフォーマーの注意層や多層認識ブロックの必要性を減らしている。
しかしながら、現在のMambaモデルは、A$、B$、C$およびD$の行列を計算するための状態空間方程式における制御可能性の強化を欠いているため、複雑さと計算コストが増大する。
さらに、Mamba2の$A$行列は必ずしも安定ではない。
最初に公表されたMambaとMamba2と比較してパラメータの減少を示す。
提案したS-マンバにおけるマンバアーキテクチャの可制御性と可観測性を強化した上で, パープレキシティを5 %改善し, トレーニング時間を3 %短縮した。
さらに、モデルの損失とパープレキシティを改善するために、Mamba2の$A$行列の安定性を強化する。
制御可能で安定な$n \times n$ state matrix $A$はスパースであり、$n$freeパラメータしか持たない。
我々の新しいアプローチは、Mamba3のゲートキーである制御可能で観測可能で安定したSSMを保証する。
関連論文リスト
- Mamba for Scalable and Efficient Personalized Recommendations [0.135975510645475]
本稿では,FT-Transformer アーキテクチャにおいて,Transformer 層を Mamba 層に置き換える新しいハイブリッドモデルを提案する。
FT-Mambaを従来のTransformerベースモデルと比較し,3つのデータセット上でのTwo-Towerアーキテクチャについて検討した。
論文 参考訳(メタデータ) (2024-09-11T14:26:14Z) - MambaMIM: Pre-training Mamba with State Space Token-interpolation [14.343466340528687]
選択構造状態空間補間(S6T)に基づくMamba(MambaMIM)の自己教師型学習手法を提案する。
MambaMIMは、Mambaの長距離表現能力を向上するために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
論文 参考訳(メタデータ) (2024-08-15T10:35:26Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
ディープニューラルネットワークアーキテクチャであるTransformerは、長年、自然言語処理などの分野を支配してきた。
マンバの最近の導入は、その優位性に挑戦し、研究者の間でかなりの関心を喚起し、マンバをベースとした一連のモデルが顕著な可能性を示している。
本研究は,総合的な議論をまとめ,本質的な研究の側面に潜り込み,(1)構造的状態空間モデルの原理に基づくマンバ機構の機能とその基盤,(2)提案されたマンバの様々なネットワークへの統合,(3)トランスフォーマーの代替としての可能性を探る。
論文 参考訳(メタデータ) (2024-06-24T15:27:21Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Mambaのような選択的な状態空間モデル(SSM)はトランスフォーマーの欠点を克服する。
同じデータセット上で訓練された8B-context Mamba, Mamba-2, Transformer モデルを直接比較する。
8BのMamba-2-Hybridは、12の標準タスクで8BのTransformerを上回っている。
論文 参考訳(メタデータ) (2024-06-12T05:25:15Z) - Mamba State-Space Models Are Lyapunov-Stable Learners [1.6385815610837167]
Mamba State-space Model (SSM) は、最近様々なタスクでTransformer Large Language Model (LLM) より優れていることが示されている。
我々は,Mambaのリカレントダイナミクスが小さな入力変化に対して堅牢であることを示す。
また、命令チューニングにより、Mambaモデルはこのギャップを81%に、Mamba-2モデルはこのギャップを132%に制限できることを示す。
論文 参考訳(メタデータ) (2024-05-31T21:46:23Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。
MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。
我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
論文 参考訳(メタデータ) (2024-02-01T07:15:58Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
マンババイト(英: MambaByte)は、マンバSSMがバイト配列で自己回帰的に訓練したトークンレス適応である。
MambaByteは、言語モデリングタスクにおいて、最先端のサブワードトランスフォーマーよりも優れています。
論文 参考訳(メタデータ) (2024-01-24T18:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。