YOLOO: You Only Learn from Others Once
- URL: http://arxiv.org/abs/2409.00618v1
- Date: Sun, 1 Sep 2024 05:09:32 GMT
- Title: YOLOO: You Only Learn from Others Once
- Authors: Lipeng Gu, Mingqiang Wei, Xuefeng Yan, Dingkun Zhu, Wei Zhao, Haoran Xie, Yong-Jin Liu,
- Abstract summary: We propose textbfYOLOO, a novel multi-modal 3D MOT paradigm: You Only Learn from Others Once.
YOLOO empowers the point cloud encoder to learn a unified tri-modal representation (UTR) from point clouds and other modalities, such as images and textual cues, all at once.
Specifically, YOLOO includes two core components: a unified tri-modal encoder (UTEnc) and a flexible geometric constraint (F-GC) module.
- Score: 43.46068978805732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal 3D multi-object tracking (MOT) typically necessitates extensive computational costs of deep neural networks (DNNs) to extract multi-modal representations. In this paper, we propose an intriguing question: May we learn from multiple modalities only during training to avoid multi-modal input in the inference phase? To answer it, we propose \textbf{YOLOO}, a novel multi-modal 3D MOT paradigm: You Only Learn from Others Once. YOLOO empowers the point cloud encoder to learn a unified tri-modal representation (UTR) from point clouds and other modalities, such as images and textual cues, all at once. Leveraging this UTR, YOLOO achieves efficient tracking solely using the point cloud encoder without compromising its performance, fundamentally obviating the need for computationally intensive DNNs. Specifically, YOLOO includes two core components: a unified tri-modal encoder (UTEnc) and a flexible geometric constraint (F-GC) module. UTEnc integrates a point cloud encoder with image and text encoders adapted from pre-trained CLIP. It seamlessly fuses point cloud information with rich visual-textual knowledge from CLIP into the point cloud encoder, yielding highly discriminative UTRs that facilitate the association between trajectories and detections. Additionally, F-GC filters out mismatched associations with similar representations but significant positional discrepancies. It further enhances the robustness of UTRs without requiring any scene-specific tuning, addressing a key limitation of customized geometric constraints (e.g., 3D IoU). Lastly, high-quality 3D trajectories are generated by a traditional data association component. By integrating these advancements into a multi-modal 3D MOT scheme, our YOLOO achieves substantial gains in both robustness and efficiency.
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - Towards Compact 3D Representations via Point Feature Enhancement Masked
Autoencoders [52.66195794216989]
We propose Point Feature Enhancement Masked Autoencoders (Point-FEMAE) to learn compact 3D representations.
Point-FEMAE consists of a global branch and a local branch to capture latent semantic features.
Our method significantly improves the pre-training efficiency compared to cross-modal alternatives.
arXiv Detail & Related papers (2023-12-17T14:17:05Z) - Point Cloud Self-supervised Learning via 3D to Multi-view Masked
Autoencoder [21.73287941143304]
Multi-Modality Masked AutoEncoders (MAE) methods leverage both 2D images and 3D point clouds for pre-training.
We introduce a novel approach employing a 3D to multi-view masked autoencoder to fully harness the multi-modal attributes of 3D point clouds.
Our method outperforms state-of-the-art counterparts by a large margin in a variety of downstream tasks.
arXiv Detail & Related papers (2023-11-17T22:10:03Z) - UniM$^2$AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving [47.590099762244535]
Masked Autoencoders (MAE) play a pivotal role in learning potent representations, delivering outstanding results across various 3D perception tasks.
This research delves into multi-modal Masked Autoencoders tailored for a unified representation space in autonomous driving.
To intricately marry the semantics inherent in images with the geometric intricacies of LiDAR point clouds, we propose UniM$2$AE.
arXiv Detail & Related papers (2023-08-21T02:13:40Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - Correlation Pyramid Network for 3D Single Object Tracking [16.694809791177263]
We propose a novel Correlation Pyramid Network (CorpNet) with a unified encoder and a motion-factorized decoder.
CorpNet achieves state-of-the-art results while running in real-time.
arXiv Detail & Related papers (2023-05-16T06:07:20Z) - PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D
Object Detection [26.03582038710992]
Masked Autoencoders learn strong visual representations and achieve state-of-the-art results in several independent modalities.
In this work, we focus on point cloud and RGB image data, two modalities that are often presented together in the real world.
We propose PiMAE, a self-supervised pre-training framework that promotes 3D and 2D interaction through three aspects.
arXiv Detail & Related papers (2023-03-14T17:58:03Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - Exploring Data Augmentation for Multi-Modality 3D Object Detection [82.9988604088494]
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud.
We propose a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying.
Our method also wins the best PKL award in the 3rd nuScenes detection challenge.
arXiv Detail & Related papers (2020-12-23T15:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.