Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
- URL: http://arxiv.org/abs/2409.00651v1
- Date: Sun, 1 Sep 2024 08:00:31 GMT
- Title: Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
- Authors: Lujie Yin, Xing Lv,
- Abstract summary: In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models.
By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics.
- Score: 0.16442870218029523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models. By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics, particularly focusing on the detection and analysis of Hopf bifurcations. Traditional numerical methods for solving partial differential equations (PDEs) often involve intricate calculations and extensive computational resources, which can be restrictive in high-dimensional problems. In contrast, PINNs offer a more flexible and efficient alternative, bypassing the need for grid discretization and allowing for mesh-free solutions. Our approach leverages the DeepXDE framework, which enhances the computational efficiency and applicability of PINNs in solving high-dimensional PDEs. We validate our results against conventional methods and demonstrate that PINNs not only provide accurate bifurcation predictions but also offer deeper insights into the underlying dynamics of diffusion processes. Despite these advantages, the study also identifies challenges such as the high computational costs and the sensitivity of PINN performance to network architecture and hyperparameter settings. Future work will focus on optimizing these algorithms and expanding their application to other complex systems involving bifurcations. The findings from this research have significant implications for the modeling and analysis of ecological systems, providing a powerful tool for predicting and understanding complex dynamical behaviors.
Related papers
- Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling [0.0]
Physics-Informed Neural Networks (PINNs) offer a promising approach by incorporating physical laws directly into the learning process.
This article explores the capabilities and limitations of the DeepXDE framework, a tool specifically designed for implementing PINNs.
We show that applying a logarithmic transformation to the current (ln(I)) significantly enhances the stability and accuracy of PINN predictions.
arXiv Detail & Related papers (2024-11-13T19:08:36Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs)
In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere.
arXiv Detail & Related papers (2023-08-18T14:58:23Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs.
We propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme.
We show that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios.
arXiv Detail & Related papers (2023-08-03T08:14:28Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
We explore an application of the Physics Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series.
We find that enriching feature space using Airy stress functions can significantly improve the accuracy of PINN solutions for biharmonic PDEs.
arXiv Detail & Related papers (2021-08-16T17:19:50Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.