Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling
- URL: http://arxiv.org/abs/2411.10483v1
- Date: Wed, 13 Nov 2024 19:08:36 GMT
- Title: Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling
- Authors: Reyhaneh Taj,
- Abstract summary: Physics-Informed Neural Networks (PINNs) offer a promising approach by incorporating physical laws directly into the learning process.
This article explores the capabilities and limitations of the DeepXDE framework, a tool specifically designed for implementing PINNs.
We show that applying a logarithmic transformation to the current (ln(I)) significantly enhances the stability and accuracy of PINN predictions.
- Score: 0.0
- License:
- Abstract: Scientific machine learning (SciML) represents a significant advancement in integrating machine learning (ML) with scientific methodologies. At the forefront of this development are Physics-Informed Neural Networks (PINNs), which offer a promising approach by incorporating physical laws directly into the learning process, thereby reducing the need for extensive datasets. However, when data is limited or the system becomes more complex, PINNs can face challenges, such as instability and difficulty in accurately fitting the training data. In this article, we explore the capabilities and limitations of the DeepXDE framework, a tool specifically designed for implementing PINNs, in addressing both forward and inverse problems related to dielectric properties. Using RC circuit models to represent dielectric materials in HVDC systems, we demonstrate the effectiveness of PINNs in analyzing and improving system performance. Additionally, we show that applying a logarithmic transformation to the current (ln(I)) significantly enhances the stability and accuracy of PINN predictions, especially in challenging scenarios with sparse data or complex models. In inverse mode, however, we faced challenges in estimating key system parameters, such as resistance and capacitance, in more complex scenarios with longer time domains. This highlights the potential for future work in improving PINNs through transformations or other methods to enhance performance in inverse problems. This article provides pedagogical insights for those looking to use PINNs in both forward and inverse modes, particularly within the DeepXDE framework.
Related papers
- Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
In this study, we explore the application of Physics-Informed Neural Networks (PINNs) to the analysis of bifurcation phenomena in ecological migration models.
By integrating the fundamental principles of diffusion-advection-reaction equations with deep learning techniques, we address the complexities of species migration dynamics.
arXiv Detail & Related papers (2024-09-01T08:00:31Z) - A Two-Stage Imaging Framework Combining CNN and Physics-Informed Neural Networks for Full-Inverse Tomography: A Case Study in Electrical Impedance Tomography (EIT) [5.772638266457322]
We propose a two-stage hybrid learning framework combining Convolutional Neural Networks (CNNs) and Physics-Informed Neural Networks (PINNs)
This framework integrates data-driven and model-driven approaches, combines supervised and unsupervised learning, and decouples the forward and inverse problems within the PINN framework in EIT.
arXiv Detail & Related papers (2024-07-25T02:48:22Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations.
We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations.
By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs.
arXiv Detail & Related papers (2024-04-04T06:56:32Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
Physics-informed machine learning (PIML) has emerged as a promising new approach for simulating complex physical and biological systems.
In PIML, we can train such networks from additional information obtained by employing the physical laws and evaluating them at random points in the space-time domain.
We review some of the prevailing trends in embedding physics into machine learning, using physics-informed neural networks (PINNs) based primarily on feed-forward neural networks and automatic differentiation.
arXiv Detail & Related papers (2022-05-16T15:46:11Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.