論文の概要: Disparity Estimation Using a Quad-Pixel Sensor
- arxiv url: http://arxiv.org/abs/2409.00665v1
- Date: Sun, 1 Sep 2024 08:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:09:07.825860
- Title: Disparity Estimation Using a Quad-Pixel Sensor
- Title(参考訳): 擬似画像センサを用いた異方性推定
- Authors: Zhuofeng Wu, Doehyung Lee, Zihua Liu, Kazunori Yoshizaki, Yusuke Monno, Masatoshi Okutomi,
- Abstract要約: クアッドピクセル(QP)センサーは、ますます商用のモバイルカメラに統合されている。
QPDNet(QP Disparity Estimation Network)を提案する。
既存のRGB-Depthデータセットからトレーニングデータセットを生成するための合成パイプラインを提案する。
- 参考スコア(独自算出の注目度): 12.34044154078824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quad-pixel (QP) sensor is increasingly integrated into commercial mobile cameras. The QP sensor has a unit of 2$\times$2 four photodiodes under a single microlens, generating multi-directional phase shifting when out-focus blurs occur. Similar to a dual-pixel (DP) sensor, the phase shifting can be regarded as stereo disparity and utilized for depth estimation. Based on this, we propose a QP disparity estimation network (QPDNet), which exploits abundant QP information by fusing vertical and horizontal stereo-matching correlations for effective disparity estimation. We also present a synthetic pipeline to generate a training dataset from an existing RGB-Depth dataset. Experimental results demonstrate that our QPDNet outperforms state-of-the-art stereo and DP methods. Our code and synthetic dataset are available at https://github.com/Zhuofeng-Wu/QPDNet.
- Abstract(参考訳): クアッドピクセル(QP)センサーは、ますます商用のモバイルカメラに統合されている。
QPセンサーは、単一のマイクロレンズの下で2$\times$24フォトダイオードの単位を持ち、アウトフォーカスのぼかしが発生すると多方向位相シフトを発生させる。
デュアルピクセル(DP)センサと同様に、位相シフトは立体差と見なすことができ、深さ推定に利用することができる。
そこで本研究では,垂直および水平のステレオマッチング相関を融合させてQP情報を利用するQPDNet(QP Disparity Estimation Network)を提案する。
また、既存のRGB-Depthデータセットからトレーニングデータセットを生成するための合成パイプラインも提示する。
実験の結果,QPDNetは最先端のステレオ法とDP法より優れていた。
コードと合成データセットはhttps://github.com/Zhuofeng-Wu/QPDNet.comで公開されています。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - Passive Snapshot Coded Aperture Dual-Pixel RGB-D Imaging [25.851398356458425]
単発3Dセンシングは、顕微鏡、医用画像、手術ナビゲーション、自律運転など、多くの応用分野において有用である。
画像レンズに符号化開口とDPセンサを併用したCADS(Coded Aperture Dual-Pixel Sensing)を提案する。
以上の結果から,ALF(All-in-focus)推定では1.5dBPSNRが改善し,DPセンシングでは5-6%の深さ推定精度が得られた。
論文 参考訳(メタデータ) (2024-02-28T06:45:47Z) - Continuous Cost Aggregation for Dual-Pixel Disparity Extraction [3.1153758106426603]
本稿では,Dual-Pixel (DP) 画像の連続的コスト集約手法を提案する。
提案アルゴリズムは、画像パスに沿ってパラボラ係数を集約し、コストのマッチングにパラボラを適合させる。
デジタル一眼レフカメラと電話カメラのDPデータを用いた実験により,提案手法がDP差分推定における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2023-06-13T17:26:50Z) - Learning Dual-Pixel Alignment for Defocus Deblurring [73.80328094662976]
本稿では,デフォーカス除去のためのDPANet(Dual-Pixel Alignment Network)を提案する。
目に見える鋭い構造やテクスチャを回復しながら、デフォーカスのぼやけを減らし、最先端のデブロアリング法よりも優れている。
論文 参考訳(メタデータ) (2022-04-26T07:02:58Z) - High-Resolution Depth Maps Based on TOF-Stereo Fusion [27.10059147107254]
そこで本研究では,効率的な種子育成アルゴリズムに基づくTOF-ステレオ融合法を提案する。
提案アルゴリズムは2次元画像に基づくステレオアルゴリズムよりも優れていることを示す。
このアルゴリズムは、単一のCPU上でリアルタイムのパフォーマンスを示す可能性がある。
論文 参考訳(メタデータ) (2021-07-30T15:11:42Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - Learning to Reduce Defocus Blur by Realistically Modeling Dual-Pixel
Data [42.06108142009718]
最近の研究は、現代のデュアルピクセル(DP)センサーで利用可能な2画像ビューを用いて、データ駆動型デブロアリングに関する印象的な結果を示している。
多くのカメラがDPセンサーを搭載しているが、低レベルのDPセンサー画像へのアクセスは限られた数に限られている。
本稿では,リアルDPデータを合成的に生成する手法を提案する。
論文 参考訳(メタデータ) (2020-12-06T13:12:43Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
本研究では,ぼかしと深度情報をリンクするDPペアの形成について検討する。
本稿では,画像の深さを共同で推定し,復元するためのエンドツーエンドDDDNet(DPベースのDepth and De Network)を提案する。
論文 参考訳(メタデータ) (2020-12-01T06:53:57Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Fully Embedding Fast Convolutional Networks on Pixel Processor Arrays [16.531637803429277]
本稿では,PPA(Pixel processor array)視覚センサのための新しいCNN推論手法を提案する。
提案手法は, 畳み込み層, 最大プーリング, ReLu, およびPPAセンサ上に完全に接続された最終層を実現する。
これは、外部処理を必要としないPPA視覚センサデバイスのプロセッサアレイで完全に行われたCNN推論を示す最初の研究である。
論文 参考訳(メタデータ) (2020-04-27T01:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。