論文の概要: Decentralized Entropy-Driven Ransomware Detection Using Autonomous Neural Graph Embeddings
- arxiv url: http://arxiv.org/abs/2502.07498v2
- Date: Wed, 26 Mar 2025 15:54:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:17:45.454710
- Title: Decentralized Entropy-Driven Ransomware Detection Using Autonomous Neural Graph Embeddings
- Title(参考訳): 自律型ニューラルネットワークを用いた分散エントロピー駆動ランサムウェア検出
- Authors: Ekaterina Starchenko, Hugo Bellinghamshire, David Pickering, Tristan Weatherspoon, Nathaniel Berkhamstead, Elizabeth Green, Magnus Rothschild,
- Abstract要約: このフレームワークはノードの分散ネットワークで動作し、単一障害点を排除し、ターゲット攻撃に対するレジリエンスを強化する。
グラフベースのモデリングと機械学習技術の統合により、このフレームワークは複雑なシステムインタラクションをキャプチャできる。
ケーススタディでは、実世界のシナリオでの有効性を検証するとともに、ランサムウェア攻撃を開始後数分で検出し軽減する能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing sophistication of cyber threats has necessitated the development of advanced detection mechanisms capable of identifying and mitigating ransomware attacks with high precision and efficiency. A novel framework, termed Decentralized Entropy-Driven Detection (DED), is introduced, leveraging autonomous neural graph embeddings and entropy-based anomaly scoring to address the limitations of traditional methods. The framework operates on a distributed network of nodes, eliminating single points of failure and enhancing resilience against targeted attacks. Experimental results demonstrate its ability to achieve detection accuracy exceeding 95\%, with false positive rates maintained below 2\% across diverse ransomware variants. The integration of graph-based modeling and machine learning techniques enables the framework to capture complex system interactions, facilitating the identification of subtle anomalies indicative of ransomware activity. Comparative analysis against existing methods highlights its superior performance in terms of detection rates and computational efficiency. Case studies further validate its effectiveness in real-world scenarios, showcasing its ability to detect and mitigate ransomware attacks within minutes of their initiation. The proposed framework represents a significant step forward in cybersecurity, offering a scalable and adaptive solution to the growing challenge of ransomware detection.
- Abstract(参考訳): サイバー脅威の高度化は、ランサムウェア攻撃を高い精度と効率で識別・緩和できる高度な検知メカニズムの開発を必要としている。
Decentralized Entropy-Driven Detection (DED)と呼ばれる新しいフレームワークが導入され、従来の手法の限界に対処するために、自律神経グラフの埋め込みとエントロピーに基づく異常スコアを活用する。
このフレームワークはノードの分散ネットワークで動作し、単一障害点を排除し、ターゲット攻撃に対するレジリエンスを強化する。
実験結果から,検出精度は95%以上,偽陽性率は2倍以下であり,ランサムウェアは多種多様であった。
グラフベースのモデリングと機械学習技術の統合により、このフレームワークは複雑なシステムインタラクションをキャプチャし、ランサムウェアの活動を示す微妙な異常の識別を容易にする。
既存の手法との比較分析は、検出率と計算効率の点で、その優れた性能を強調している。
ケーススタディでは、実世界のシナリオにおけるその効果をさらに検証し、ランサムウェア攻撃を開始後数分以内に検出し軽減する能力を示している。
提案されたフレームワークは、ランサムウェア検出の増大する課題に対して、スケーラブルで適応的なソリューションを提供する、サイバーセキュリティにおける重要な一歩である。
関連論文リスト
- A Computational Model for Ransomware Detection Using Cross-Domain Entropy Signatures [0.0]
マルチドメインシステムのバリエーションを分析するために,エントロピーに基づく計算フレームワークを導入した。
良性およびランサムウェア誘発のエントロピーシフトを区別する検出法を開発した。
論文 参考訳(メタデータ) (2025-02-15T07:50:55Z) - Decentralized Entropy-Based Ransomware Detection Using Autonomous Feature Resonance [0.0]
従来のランサムウェア検出手法の限界に対処するため,自律的特徴共鳴と呼ばれる新しい手法が導入された。
提案手法は, 検出精度97.3%, 偽陽性, 偽陰性率は1.8%, 偽陰性率は2.1%である。
論文 参考訳(メタデータ) (2025-02-14T00:26:10Z) - Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework [0.0]
エントロピー変動のモニタリングは、不正なデータ修正を識別するための代替アプローチを提供する。
階層的エントロピー破壊を利用したフレームワークを導入し,エントロピー分布の偏差を解析した。
複数のランサムウェアにまたがるフレームワークの評価は、高い検出精度を達成する能力を示した。
論文 参考訳(メタデータ) (2025-02-12T23:29:06Z) - Hierarchical Entropic Diffusion for Ransomware Detection: A Probabilistic Approach to Behavioral Anomaly Isolation [0.0]
本稿では,構造的エントロピーに基づく異常分類機構を提案する。
エントロピーの進化の変動を追跡し、良質な暗号プロセスと不正な暗号化の試みを区別する。
さまざまなランサムウェアファミリーにまたがる高い分類精度を維持し、従来のベースとシグネチャ駆動のアプローチより優れている。
論文 参考訳(メタデータ) (2025-02-06T08:55:11Z) - Entropy-Synchronized Neural Hashing for Unsupervised Ransomware Detection [0.0]
Entropy-Synchronized Neural Hashing (ESNH)フレームワークは、エントロピー駆動のハッシュ表現を使用してソフトウェアバイナリを分類する。
このモデルは、多型変換や変成変換に直面しても安定性を維持する頑健でユニークなハッシュ値を生成する。
論文 参考訳(メタデータ) (2025-01-30T04:40:57Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。