Fair Reciprocal Recommendation in Matching Markets
- URL: http://arxiv.org/abs/2409.00720v1
- Date: Sun, 01 Sep 2024 13:33:41 GMT
- Title: Fair Reciprocal Recommendation in Matching Markets
- Authors: Yoji Tomita, Tomohiki Yokoyama,
- Abstract summary: We investigate reciprocal recommendation in two-sided matching markets between agents divided into two sides.
In our model, a match is considered successful only when both individuals express interest in each other.
We introduce its fairness criterion, envy-freeness, from the perspective of fair division theory.
- Score: 0.8287206589886881
- License:
- Abstract: Recommender systems play an increasingly crucial role in shaping people's opportunities, particularly in online dating platforms. It is essential from the user's perspective to increase the probability of matching with a suitable partner while ensuring an appropriate level of fairness in the matching opportunities. We investigate reciprocal recommendation in two-sided matching markets between agents divided into two sides. In our model, a match is considered successful only when both individuals express interest in each other. Additionally, we assume that agents prefer to appear prominently in the recommendation lists presented to those on the other side. We define each agent's opportunity to be recommended and introduce its fairness criterion, envy-freeness, from the perspective of fair division theory. The recommendations that approximately maximize the expected number of matches, empirically obtained by heuristic algorithms, are likely to result in significant unfairness of opportunity. Therefore, there can be a trade-off between maximizing the expected matches and ensuring fairness of opportunity. To address this challenge, we propose a method to find a policy that is close to being envy-free by leveraging the Nash social welfare function. Experiments on synthetic and real-world datasets demonstrate the effectiveness of our approach in achieving both relatively high expected matches and fairness for opportunities of both sides in reciprocal recommender systems.
Related papers
- Intersectional Two-sided Fairness in Recommendation [41.96733939002468]
We propose a novel approach called Inter-sectional Two-sided Fairness Recommendation (ITFR)
Our method utilizes a sharpness-aware loss to perceive disadvantaged groups, and then uses collaborative loss balance to develop consistent distinguishing abilities for different intersectional groups.
Our proposed approach effectively alleviates the intersectional two-sided unfairness and consistently outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T08:56:24Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Dynamic fairness-aware recommendation through multi-agent social choice [10.556124653827647]
We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted.
We propose a model to formalize multistakeholder fairness in recommender systems as a two stage social choice problem.
arXiv Detail & Related papers (2023-03-02T05:06:17Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
This article develops a framework for learning optimal strategies in real-world matching markets.
We show that there exists a welfare-versus-fairness trade-off that is characterized by the uncertainty level of acceptance.
We prove that participants can be better off with multi-stage matching compared to single-stage matching.
arXiv Detail & Related papers (2021-02-13T19:25:52Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - "And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation [37.35485045640196]
We argue that the previous literature has been based on simple, uniform and often uni-dimensional notions of fairness assumptions.
We explicitly represent the design decisions that enter into the trade-off between accuracy and fairness across multiply-defined and intersecting protected groups.
We formulate lottery-based mechanisms for choosing between fairness concerns, and demonstrate their performance in two recommendation domains.
arXiv Detail & Related papers (2020-09-05T20:15:14Z) - Achieving Fairness via Post-Processing in Web-Scale Recommender Systems [6.5191290612443105]
We extend the definitions of fairness to recommender systems, namely equality of opportunity and equalized odds.
We propose scalable methods for achieving equality of opportunity and equalized odds in rankings in the presence of position bias.
arXiv Detail & Related papers (2020-06-19T20:12:13Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - Opportunistic Multi-aspect Fairness through Personalized Re-ranking [5.8562079474220665]
We present a re-ranking approach to fairness-aware recommendation that learns individual preferences across multiple fairness dimensions.
We show that our opportunistic and metric-agnostic approach achieves a better trade-off between accuracy and fairness than prior re-ranking approaches.
arXiv Detail & Related papers (2020-05-21T04:25:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.