LPUWF-LDM: Enhanced Latent Diffusion Model for Precise Late-phase UWF-FA Generation on Limited Dataset
- URL: http://arxiv.org/abs/2409.00726v1
- Date: Sun, 1 Sep 2024 14:09:00 GMT
- Title: LPUWF-LDM: Enhanced Latent Diffusion Model for Precise Late-phase UWF-FA Generation on Limited Dataset
- Authors: Zhaojie Fang, Xiao Yu, Guanyu Zhou, Ke Zhuang, Yifei Chen, Ruiquan Ge, Changmiao Wang, Gangyong Jia, Qing Wu, Juan Ye, Maimaiti Nuliqiman, Peifang Xu, Ahmed Elazab,
- Abstract summary: Ultra-Wide-Field Fluorescein Angiography (UWF-FA) enables precise identification of ocular diseases using sodium fluorescein.
Existing research has developed methods to generate UWF-FA from Ultra-Wide-Phase Scanning Laser Ophthalmoscopy (UWF-SLO) to reduce the adverse reactions associated with injections.
Two primary challenges hinder the generation of high-quality late-phase UWF-FA: the scarcity of paired UWF-SLO and early/late-phase UWF-FA datasets, and the need for realistic generation at lesion sites and potential blood leakage regions
- Score: 8.612128994023832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultra-Wide-Field Fluorescein Angiography (UWF-FA) enables precise identification of ocular diseases using sodium fluorescein, which can be potentially harmful. Existing research has developed methods to generate UWF-FA from Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) to reduce the adverse reactions associated with injections. However, these methods have been less effective in producing high-quality late-phase UWF-FA, particularly in lesion areas and fine details. Two primary challenges hinder the generation of high-quality late-phase UWF-FA: the scarcity of paired UWF-SLO and early/late-phase UWF-FA datasets, and the need for realistic generation at lesion sites and potential blood leakage regions. This study introduces an improved latent diffusion model framework to generate high-quality late-phase UWF-FA from limited paired UWF images. To address the challenges as mentioned earlier, our approach employs a module utilizing Cross-temporal Regional Difference Loss, which encourages the model to focus on the differences between early and late phases. Additionally, we introduce a low-frequency enhanced noise strategy in the diffusion forward process to improve the realism of medical images. To further enhance the mapping capability of the variational autoencoder module, especially with limited datasets, we implement a Gated Convolutional Encoder to extract additional information from conditional images. Our Latent Diffusion Model for Ultra-Wide-Field Late-Phase Fluorescein Angiography (LPUWF-LDM) effectively reconstructs fine details in late-phase UWF-FA and achieves state-of-the-art results compared to other existing methods when working with limited datasets. Our source code is available at: https://github.com/Tinysqua/****.
Related papers
- Towards Data-Centric Face Anti-Spoofing: Improving Cross-domain Generalization via Physics-based Data Synthesis [64.46312434121455]
Face Anti-Spoofing (FAS) research is challenged by the cross-domain problem, where there is a domain gap between the training and testing data.
We propose task-specific FAS data augmentation (FAS-Aug), which increases data diversity by synthesizing data of artifacts.
We also propose Spoofing Attack Risk Equalization (SARE) to prevent models from relying on certain types of artifacts and improve the generalization performance.
arXiv Detail & Related papers (2024-09-04T01:45:18Z) - UWF-RI2FA: Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Retinal Imaging Improves Diabetic Retinopathy Stratification [10.833651195216557]
We aim to acquire dye-free UWF-FA images from noninvasive UWF retinal imaging (UWF-RI) using generative artificial intelligence (GenAI)
A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-RI images and fed into a generative adversarial networks (GAN)-based model for training.
The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation.
arXiv Detail & Related papers (2024-08-20T08:22:29Z) - UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement [17.28459176559761]
UWF fluorescein angiography (UWF-FA) requires the administration of a fluorescent dye via injection into the patient's hand or elbow.
To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms.
We introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO.
arXiv Detail & Related papers (2024-05-01T14:27:43Z) - F2FLDM: Latent Diffusion Models with Histopathology Pre-Trained Embeddings for Unpaired Frozen Section to FFPE Translation [2.435021773579434]
The Frozen Section (FS) technique is a rapid and efficient method, taking only 15-30 minutes to prepare slides for pathologists' evaluation during surgery.
FS process often introduces artifacts and distortions like folds and ice-crystal effects.
These artifacts are absent in the higher-quality formalin-fixed paraffin-embedded (FFPE) slides, which require 2-3 days to prepare.
We introduce a novel approach that combines LDMs with Histopathology Pre-Trained Embeddings to enhance restoration of FS images.
arXiv Detail & Related papers (2024-04-19T06:32:21Z) - DiffMAC: Diffusion Manifold Hallucination Correction for High Generalization Blind Face Restoration [62.44659039265439]
We propose a Diffusion-Information-Diffusion framework to tackle blind face restoration.
DiffMAC achieves high-generalization face restoration in diverse degraded scenes and heterogeneous domains.
Results demonstrate the superiority of DiffMAC over state-of-the-art methods.
arXiv Detail & Related papers (2024-03-15T08:44:15Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - UWAT-GAN: Fundus Fluorescein Angiography Synthesis via Ultra-wide-angle
Transformation Multi-scale GAN [1.165405976310311]
Fundus photography is an essential examination for clinical and differential diagnosis of fundus diseases.
Current methods in fundus imaging could not produce high-resolution images and are unable to capture tiny vascular lesion areas.
This paper proposes a novel conditional generative adversarial network (UWAT-GAN) to synthesize UWF-FA from UWF-SLO.
arXiv Detail & Related papers (2023-07-21T12:23:39Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis
Models via Adversarial Learning and Pseudo-Labeling [29.009663623719064]
Ultra-widefield (UWF) 200degreefundus imaging by Optos cameras has gradually been introduced.
Regular fundus images contain a large amount of high-quality and well-annotated data.
Due to the domain gap, models trained by regular fundus images to recognize UWF fundus images perform poorly.
We propose the use of a modified cycle generative adversarial network (CycleGAN) model to bridge the gap between regular and UWF fundus.
arXiv Detail & Related papers (2020-11-27T16:25:30Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.