論文の概要: Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2409.00741v1
- Date: Sun, 1 Sep 2024 15:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 11:36:58.089723
- Title: Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
- Title(参考訳): 信頼とバランス: 効果的なソースレス非教師なしドメイン適応のための擬似ラベルと温度スケールの損失
- Authors: Andrea Maracani, Lorenzo Rosasco, Lorenzo Natale,
- Abstract要約: Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL)を紹介する。
FTSPは、ターゲットデータからの信頼されたサンプルの限られたサブセットを使用して、ドメイン全体の擬似ラベルを推論する分類器を構築する。
TSALは、ユニークな双対温度スケジューリング、漸近的なバランスの多様性、識別性、擬似ラベルの組み込みで設計されている。
- 参考スコア(独自算出の注目度): 16.5799094981322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks have significantly impacted many computer vision tasks. However, their effectiveness diminishes when test data distribution (target domain) deviates from the one of training data (source domain). In situations where target labels are unavailable and the access to the labeled source domain is restricted due to data privacy or memory constraints, Source-Free Unsupervised Domain Adaptation (SF-UDA) has emerged as a valuable tool. Recognizing the key role of SF-UDA under these constraints, we introduce a novel approach marked by two key contributions: Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL). FTSP employs a limited subset of trusted samples from the target data to construct a classifier to infer pseudo-labels for the entire domain, showing simplicity and improved accuracy. Simultaneously, TSAL, designed with a unique dual temperature scheduling, adeptly balance diversity, discriminability, and the incorporation of pseudo-labels in the unsupervised adaptation objective. Our methodology, that we name Trust And Balance (TAB) adaptation, is rigorously evaluated on standard datasets like Office31 and Office-Home, and on less common benchmarks such as ImageCLEF-DA and Adaptiope, employing both ResNet50 and ViT-Large architectures. Our results compare favorably with, and in most cases surpass, contemporary state-of-the-art techniques, underscoring the effectiveness of our methodology in the SF-UDA landscape.
- Abstract(参考訳): ディープニューラルネットワークは多くのコンピュータビジョンタスクに大きな影響を与えている。
しかし、テストデータ分散(ターゲットドメイン)がトレーニングデータ(ソースドメイン)から逸脱すると、その効果は低下する。
データプライバシやメモリの制約により、ターゲットラベルが利用できなくなり、ラベル付きソースドメインへのアクセスが制限される状況では、Source-Free Unsupervised Domain Adaptation (SF-UDA) が貴重なツールとして登場した。
これらの制約下でのSF-UDAの役割を認識し,FTSP (Few Trusted Samples Pseudo-labeling) とTSAL (The temperature Scaled Adaptive Loss) の2つの重要な貢献を特徴とする新しいアプローチを導入する。
FTSPは、ターゲットデータからの信頼されたサンプルの限られたサブセットを使用して、ドメイン全体の擬似ラベルを推論する分類器を構築し、単純さと精度の向上を示す。
同時にTSALは、ユニークな二重温度スケジューリング、漸近的に多様性のバランス、識別性、および教師なし適応目的に擬似ラベルを組み込むように設計された。
我々は、Trust And Balance (TAB) 適応という名前で、Office31やOffice-Homeのような標準データセット、ImageCLEF-DAやAdaptiopeのようなあまり一般的なベンチマークで厳格に評価されており、ResNet50とViT-Largeアーキテクチャを使っている。
本研究の結果は, SF-UDAランドスケープにおける方法論の有効性を実証し, 現代の最先端技術に勝るものがほとんどである。
関連論文リスト
- Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine
Self-Supervision [16.027843524655516]
本稿では,アノテートされたソースデータへの依存を解消する,ソースフリードメイン適応(Source-Free Domain Adaptation, SFDA)の実践的問題について検討する。
現在のSFDA法は、ソーストレーニングされたモデルからドメイン知識を抽出することに重点を置いているが、対象ドメインの本質的な構造を無視している。
本稿では,領域レベルと画素レベルの識別表現を粗大な自己超越によって学習する,領域間適応ネットワーク(RPANet)と呼ばれる新しいSFDAフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-13T02:37:08Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-31T03:14:44Z) - Key Design Choices for Double-Transfer in Source-Free Unsupervised
Domain Adaptation [18.21955526087808]
本稿では、SF-UDA(Source-Free Unsupervised Domain Adaptation)における主要な設計選択の詳細な分析を行う。
正規化アプローチ、事前学習戦略、バックボーンアーキテクチャを最も重要な要素として挙げる。
SF-UDAは、標準ベンチマークやバックボーンアーキテクチャよりも競争力があり、データと計算コストのごく一部でUDAと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-02-10T17:00:37Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Source-free Unsupervised Domain Adaptation for Blind Image Quality
Assessment [20.28784839680503]
既存の学習ベースのブラインド画像品質評価法(BIQA)は、大量の注釈付きトレーニングデータに大きく依存している。
本稿では,ソースフリーな非教師付きドメイン適応(SFUDA)への第一歩を,シンプルで効率的な方法で進める。
本稿では、BNアフィンパラメータのターゲット領域への適応を導くための、十分に設計された自己教師対象のグループを示す。
論文 参考訳(メタデータ) (2022-07-17T09:42:36Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
自動音声認識(ASR)のクロスドメイン性能は,トレーニングとテストのミスマッチにより著しく損なわれる可能性がある。
従来, 自己監督学習 (SSL) や擬似ラベル学習 (PL) は, 未ラベルデータの自己監督を利用してUDAに有効であることが示された。
この研究は、事前学習および微調整のパラダイムにおいて、ラベルなしデータを完全に活用する体系的なUDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-20T14:02:53Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
既存のUnsupervised Domain Adaptation (UDA)メソッドは、トレーニング中にソースとターゲットのドメインデータを同時に利用できると仮定する。
訓練済みのソースモデルは、よく知られたドメインシフトの問題により、ターゲットに対して性能が悪くても、常に利用可能であると考えられている。
適応型ノイズフィルタリングと擬似ラベル改良に取り組むための統一手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T22:18:34Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
教師なしドメイン適応(unsupervised domain adaptation) ソースとターゲットのドメインデータは自由に利用でき、通常、ドメイン間のギャップを減らすために一緒に訓練される。
ノイズの多いラベルで学習する問題にモデル化することで,ソースデータのないドメイン適応オブジェクト検出(SFOD)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-10T01:42:35Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。