Interpretable Clustering: A Survey
- URL: http://arxiv.org/abs/2409.00743v1
- Date: Sun, 1 Sep 2024 15:09:51 GMT
- Title: Interpretable Clustering: A Survey
- Authors: Lianyu Hu, Mudi Jiang, Junjie Dong, Xinying Liu, Zengyou He,
- Abstract summary: Clustering algorithms are increasingly being applied in high-stakes domains such as healthcare, finance, and autonomous systems.
The need for transparent and interpretable clustering outcomes has become a critical concern.
This paper provides a comprehensive and structured review of the current state of explainable clustering algorithms.
- Score: 1.5641228378135836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, much of the research on clustering algorithms has primarily focused on enhancing their accuracy and efficiency, frequently at the expense of interpretability. However, as these methods are increasingly being applied in high-stakes domains such as healthcare, finance, and autonomous systems, the need for transparent and interpretable clustering outcomes has become a critical concern. This is not only necessary for gaining user trust but also for satisfying the growing ethical and regulatory demands in these fields. Ensuring that decisions derived from clustering algorithms can be clearly understood and justified is now a fundamental requirement. To address this need, this paper provides a comprehensive and structured review of the current state of explainable clustering algorithms, identifying key criteria to distinguish between various methods. These insights can effectively assist researchers in making informed decisions about the most suitable explainable clustering methods for specific application contexts, while also promoting the development and adoption of clustering algorithms that are both efficient and transparent.
Related papers
- GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
This study aims to analyze various hierarchical and incremental clustering techniques.
The main contribution of this research is the organization and comparison of the techniques used by studies published between 2010 and 2018 that aimed to texts documents clustering.
arXiv Detail & Related papers (2023-12-12T22:27:29Z) - A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs [0.0]
We present a novel machine learning based framework in order to achieve optimal load profiling through a real case study.
In this paper, we present a novel machine learning based framework in order to achieve optimal load profiling through a real case study.
arXiv Detail & Related papers (2023-10-31T11:23:26Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - A Validity Perspective on Evaluating the Justified Use of Data-driven
Decision-making Algorithms [14.96024118861361]
We apply the lens of validity to re-examine challenges in problem formulation and data issues that jeopardize the justifiability of using predictive algorithms.
We demonstrate how these validity considerations could distill into a series of high-level questions intended to promote and document reflections on the legitimacy of the predictive task and the suitability of the data.
arXiv Detail & Related papers (2022-06-30T02:22:31Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - A review of systematic selection of clustering algorithms and their
evaluation [0.0]
This paper aims to identify a systematic selection logic for clustering algorithms and corresponding validation concepts.
The goal is to enable potential users to choose an algorithm that fits best to their needs and the properties of their underlying data clustering problem.
arXiv Detail & Related papers (2021-06-24T07:01:46Z) - DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning [0.0]
We propose DAC, Deep Autoencoder-based Clustering, a data-driven framework to learn clustering representations using deep neuron networks.
Experiment results show that our approach could effectively boost performance of the KMeans clustering algorithm on a variety of datasets.
arXiv Detail & Related papers (2021-02-15T11:31:00Z) - HAWKS: Evolving Challenging Benchmark Sets for Cluster Analysis [2.5329716878122404]
Comprehensive benchmarking of clustering algorithms is difficult.
There is no consensus regarding the best practice for rigorous benchmarking.
We demonstrate the important role evolutionary algorithms play to support flexible generation of such benchmarks.
arXiv Detail & Related papers (2021-02-13T15:01:34Z) - Fair Hierarchical Clustering [92.03780518164108]
We define a notion of fairness that mitigates over-representation in traditional clustering.
We show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
arXiv Detail & Related papers (2020-06-18T01:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.