Near Infrared Quantum Ghost Spectroscopy for Threats Detection
- URL: http://arxiv.org/abs/2409.00833v1
- Date: Sun, 1 Sep 2024 20:32:51 GMT
- Title: Near Infrared Quantum Ghost Spectroscopy for Threats Detection
- Authors: Andrea Chiuri, Federico Angelini, Ilaria Gianani, Simone Santoro, Marco Barbieri,
- Abstract summary: We build on the idea of the Quantum Ghost Spectroscopy (QGS) to target specific applications in the detection of possible threats.
The time-frequency domain reveals a huge potential for several applications and frequency correlations represent a versatile tool.
The use of nondegenerate sources of correlated photons allowed to reveal spectral features in the near infrared wavelengths employing the usual detectors for the visible region.
- Score: 1.9404443846394965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Sensing is a rapidly growing branch of research within the area of quantum science and technology offering key resources, beyond classical ones, with potential for commercialisation of novel (quantum) sensors. The exploitation of quantum resources offered by photons can boost the performance of quantum sensors for innovative and challenging applications. In this paper we build on the idea of the Quantum Ghost Spectroscopy (QGS), i.e. the counterpart in the frequency domain of Quantum Ghost Imaging (QGI), targeting specific applications in the detection of possible threats. This is implemented by exploiting the opportunities offered by Quantum Optics, i.e. the generation of photon pairs characterized by spectral correlations. We will discuss our main results obtained with pure QGS experiments showing that it is possible to assess the presence of a target dealing with a low resources measurement. The time-frequency domain reveals a huge potential for several applications and frequency correlations represent a versatile tool that can be exploited to enable the spectral analysis of objects where a direct measurement would not be feasible (e.g. security). The use of nondegenerate sources of correlated photons allowed to reveal spectral features in the near infrared wavelengths employing the usual detectors for the visible region.
Related papers
- Prospects for NMR Spectral Prediction on Fault-Tolerant Quantum Computers [0.24578723416255752]
Nuclear magnetic resonance spectroscopy is a prominent analytical tool.
Advances in atomic magnetometry have enabled this spectroscopy far below geomagnetic field strengths.
We show how fault-tolerant quantum computation could be used to simulate these spectra.
arXiv Detail & Related papers (2024-06-13T17:20:49Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Quantum nonlinear spectroscopy via correlations of weak Faraday-rotation
measurements [0.0]
correlations of fluctuations are key to studying fundamental quantum physics and quantum many-body systems.
spectroscopy and noise spectroscopy are powerful tools to characterize fluctuations, but they can access only very few among the many types of higher-order correlations.
A systematic quantum sensing approach, called quantum nonlinear spectroscopy (QNS), is recently proposed for extracting arbitrary types and orders of time-ordered correlations.
arXiv Detail & Related papers (2023-09-01T01:50:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A Study on Quantum Radar Technology Developments and Design
Consideration for its integration [0.0]
Quantum radar systems supported by quantum measurement can fulfill not only conventional target detection and recognition tasks but are also capable of detecting and identifying the RF stealth platform and weapons systems.
The concept of a quantum radar has been proposed which utilizes quantum states of photons to establish information on a target at a distance.
arXiv Detail & Related papers (2022-05-25T06:53:23Z) - Ghost imaging as loss estimation: Quantum versus classical schemes [0.0]
We report on the metrological comparison between a quantum and a classical ghost spectrometer.
We perform the estimation of the transmittivity of a bandpass filter using frequency-entangled photon pairs.
Our results show that a quantum advantage is achievable, depending on the values of the transmittivity and on the number of frequency modes analyzed.
arXiv Detail & Related papers (2021-05-20T13:21:46Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.