論文の概要: Detection, Recognition and Pose Estimation of Tabletop Objects
- arxiv url: http://arxiv.org/abs/2409.00869v1
- Date: Sun, 1 Sep 2024 23:31:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:40:50.593000
- Title: Detection, Recognition and Pose Estimation of Tabletop Objects
- Title(参考訳): テーブルトップ物体の検出・認識・位置推定
- Authors: Sanjuksha Nirgude, Kevin DuCharme, Namrita Madhusoodanan,
- Abstract要約: このプロジェクトは、この技術の社会的な応用に焦点を当てている。
一般的なテーブルトップオブジェクトを検出して認識することができるニューラルネットワークモデルを開発した。
ディープラーニングモデルによって予測される特定のオブジェクトの向きは、変換行列の計算に使用できる。
これはピック・アンド・プレイス・ロボットに送って転送を行うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The problem of cleaning a messy table using Deep Neural Networks is a very interesting problem in both social and industrial robotics. This project focuses on the social application of this technology. A neural network model that is capable of detecting and recognizing common tabletop objects, such as a mug, mouse, or stapler is developed. The model also predicts the angle at which these objects are placed on a table,with respect to some reference. Assuming each object has a fixed intended position and orientation on the tabletop, the orientation of a particular object predicted by the deep learning model can be used to compute the transformation matrix to move the object from its initial position to the intended position. This can be fed to a pick and place robot to carry out the transfer.This paper talks about the deep learning approaches used in this project for object detection and orientation estimation.
- Abstract(参考訳): Deep Neural Networksを使った散らかったテーブルのクリーニングの問題は、社会と産業の両方のロボティクスにおいて非常に興味深い問題である。
このプロジェクトは、この技術の社会的な応用に焦点を当てている。
マグ、マウス、ステープラなどの一般的なテーブルトップオブジェクトを検出して認識することができるニューラルネットワークモデルを開発する。
モデルは、参照に関して、これらのオブジェクトがテーブル上に置かれる角度も予測する。
各オブジェクトがテーブルトップ上の固定された位置と向きを持つと仮定すると、ディープラーニングモデルによって予測される特定のオブジェクトの向きは変換行列を計算し、対象を初期位置から意図された位置へ移動させる。
本論文では,本プロジェクトにおける物体検出と方向推定のための深層学習手法について述べる。
関連論文リスト
- Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
本稿では,ロボットが対象物の完全な3次元モデルを高速に学習し,不慣れな方向で操作できるアプローチを提案する。
我々は、部分的に構築されたNeRFモデルのアンサンブルを用いて、モデルの不確実性を定量化し、次の動作を決定する。
提案手法は, 部分的NeRFモデルにより対象物をいつ, どのように把握し, 再指向するかを判断し, 相互作用中に導入された不整合を補正するために, 対象のポーズを再推定する。
論文 参考訳(メタデータ) (2024-04-02T10:15:06Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
オブジェクト中心の把握のためのエンドツーエンドアーキテクチャを導入する。
提案手法の有効性を,合成データセット上での最先端手法に対して広範囲に評価することにより示す。
論文 参考訳(メタデータ) (2024-01-18T12:41:41Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
現在の技術は参照3Dオブジェクトに大きく依存しており、その一般化性を制限し、新しいオブジェクトカテゴリに拡張するのにコストがかかる。
本稿では,オブジェクトに適合するプリミティブな形状に対してオブジェクトのポーズを予測する,オブジェクトのポーズ推定のためのスーパークワッドリックベースのフレームワークであるShapeShiftを提案する。
論文 参考訳(メタデータ) (2023-04-10T20:55:41Z) - LocPoseNet: Robust Location Prior for Unseen Object Pose Estimation [69.70498875887611]
LocPoseNetは、見えないオブジェクトに先立って、ロバストにロケーションを学習することができる。
提案手法は,LINEMOD と GenMOP において,既存の作業よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-29T15:21:34Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Neural Descriptor Fields: SE(3)-Equivariant Object Representations for
Manipulation [75.83319382105894]
対象と対象の相対的なポーズを符号化するオブジェクト表現であるニューラル・ディスクリプタ・フィールド(NDF)を提案する。
NDFは、専門家ラベル付きキーポイントに依存しない3D自動エンコーディングタスクを通じて、自己教師型で訓練される。
我々のパフォーマンスは、オブジェクトインスタンスと6-DoFオブジェクトの両方のポーズを一般化し、2Dディスクリプタに依存する最近のベースラインを著しく上回ります。
論文 参考訳(メタデータ) (2021-12-09T18:57:15Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Florence、Manuelli、TedrakeによるDense Object Nets(DON)は、ロボットコミュニティのための新しいビジュアルオブジェクト表現として高密度オブジェクト記述子を導入した。
本稿では, 物体の3次元モデルを考えると, 記述子空間画像を生成することができ, DON の教師付きトレーニングが可能であることを示す。
産業用物体の6次元グリップ生成のためのトレーニング手法を比較し,新しい教師付きトレーニング手法により,産業関連タスクのピック・アンド・プレイス性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-16T11:40:12Z) - Object Detection and Pose Estimation from RGB and Depth Data for
Real-time, Adaptive Robotic Grasping [0.0]
動的ロボットの把握を目的として,リアルタイム物体検出とポーズ推定を行うシステムを提案する。
提案されたアプローチは、ロボットが物体のアイデンティティとその実際のポーズを検出し、新しいポーズで使用するために正準の把握を適応させることを可能にする。
訓練のためのシステムは、ロボットの手首に取り付けられたグリッパーに対する対象の相対的な姿勢を捉えることで、標準的な把握を定義する。
テスト中、新しいポーズが検出されると、物体の正準的な把握が識別され、ロボットアームの関節角度を調整して動的に適応されます。
論文 参考訳(メタデータ) (2021-01-18T22:22:47Z) - Learning Object-Based State Estimators for Household Robots [11.055133590909097]
我々は高次元観測と仮説に基づいてオブジェクトベースのメモリシステムを構築する。
シミュレーション環境と実画像の両方において動的に変化するオブジェクトの記憶を維持するシステムの有効性を実証する。
論文 参考訳(メタデータ) (2020-11-06T04:18:52Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
中心点から抽出された画像の特徴は、離れたキーポイントや境界ボックスの境界を予測するための限られた情報を含んでいると論じる。
推論を容易にするために,より有利な位置に配置された点集合からの回帰を行うことを提案する。
我々は、オブジェクト検出、インスタンス分割、人間のポーズ推定にPoint-Set Anchorsと呼ばれるこのフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-06T15:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。