論文の概要: Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations
- arxiv url: http://arxiv.org/abs/2409.00897v2
- Date: Mon, 16 Sep 2024 19:27:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 21:19:40.199944
- Title: Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations
- Title(参考訳): 空に侵入する:地球観測星団におけるデータ遅延とオーバーフロー攻撃
- Authors: Xiaojian Wang, Ruozhou Yu, Dejun Yang, Guoliang Xue,
- Abstract要約: 低地球軌道(LEO)地球観測(EO)衛星は、地球を観測する方法を変えました。
EO衛星はダウンリンク通信能力が非常に限られており、送信帯域、地上局の数と位置、高速衛星移動による小さな送信窓によって制限されている。
本稿では,EOコンステレーションにおける資源競争による新たな攻撃面について検討し,地球観測データの遅延や低下を正統なEOサービスを用いて検討する。
- 参考スコア(独自算出の注目度): 13.197457702744991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low Earth Orbit (LEO) Earth Observation (EO) satellites have changed the way we monitor Earth. Acting like moving cameras, EO satellites are formed in constellations with different missions and priorities, and capture vast data that needs to be transmitted to the ground for processing. However, EO satellites have very limited downlink communication capability, limited by transmission bandwidth, number and location of ground stations, and small transmission windows due to high velocity satellite movement. To optimize resource utilization, EO constellations are expected to share communication spectrum and ground stations for maximum communication efficiency. In this paper, we investigate a new attack surface exposed by resource competition in EO constellations, targeting the delay or drop of Earth monitoring data using legitimate EO services. Specifically, an attacker can inject high-priority requests to temporarily preempt low-priority data transmission windows. Furthermore, we show that by utilizing predictable satellite dynamics, an attacker can intelligently target critical data from low-priority satellites, either delaying its delivery or irreversibly dropping the data. We formulate two attacks, the data delay attack and the data overflow attack, design algorithms to assist attackers in devising attack strategies, and analyze their feasibility or optimality in typical scenarios. We then conduct trace-driven simulations using real-world satellite images and orbit data to evaluate the success probability of launching these attacks under realistic satellite communication settings. We also discuss possible defenses against these attacks.
- Abstract(参考訳): 低地球軌道(LEO)地球観測(EO)衛星は、地球を観測する方法を変えました。
移動カメラのように、EO衛星は異なるミッションと優先順位の星座に形成され、処理のために地上に送信する必要がある膨大なデータを捕捉する。
しかし、EO衛星はダウンリンク通信能力が非常に限られており、送信帯域、地上局の数と位置、高速衛星移動による小さな送信窓によって制限されている。
資源利用を最適化するために、EOコンステレーションは、通信効率の最大化のために、通信スペクトルと地上局を共有することが期待されている。
本稿では,EOコンステレーションにおける資源競争による新たな攻撃面について検討し,地球観測データの遅延や低下を正統なEOサービスを用いて検討する。
具体的には、攻撃者は高優先度要求を注入して、一時的に低優先度データ送信ウィンドウをプリエンプトすることができる。
さらに、予測可能な衛星力学を利用することで、攻撃者は低優先度の衛星から重要なデータを知的にターゲットし、配信を遅らせるか、データを不可逆的に落とすかのどちらかを示す。
我々は、データ遅延攻撃とデータオーバーフロー攻撃の2つの攻撃を定式化し、攻撃者が攻撃戦略を考案するのを支援するアルゴリズムを設計し、典型的なシナリオにおけるその実現可能性や最適性を分析する。
次に、実世界の衛星画像と軌道データを用いてトレース駆動シミュレーションを行い、現実的な衛星通信環境下でこれらの攻撃を発射する確率を評価する。
これらの攻撃に対する防御の可能性についても論じる。
関連論文リスト
- A Sharded Blockchain-Based Secure Federated Learning Framework for LEO Satellite Networks [4.034610694515541]
低地球軌道(LEO)衛星ネットワークは、宇宙ベースの人工知能(AI)アプリケーションにますます不可欠である。
商業利用が拡大するにつれて、LEO衛星ネットワークはサイバー攻撃のリスクが高まる。
我々は、SBFL-LEOと呼ばれるLEOネットワークのためのシャーディングブロックチェーンベースのフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:22:52Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Vehicle Perception from Satellite [54.07157185000604]
データセットは、GTA-Vから記録された12の衛星ビデオと14の合成ビデオに基づいて構築されている。
小さなオブジェクトの検出、カウント、密度推定など、いくつかのタスクをサポートする。
128,801両は完全に注釈付けされており、各画像の車両数は0から101まで様々である。
論文 参考訳(メタデータ) (2024-02-01T15:59:16Z) - Evaluating the Security of Satellite Systems [24.312198733476063]
本稿では,衛星を対象とする敵戦術,技術,手順を包括的に分類する。
地上、空間、コミュニケーション、およびユーザセグメントを含む宇宙のエコシステムを調べ、そのアーキテクチャ、機能、脆弱性を強調します。
そこで本稿では,MITRE ATT&CKフレームワークの新たな拡張として,敵のライフサイクル全体にわたる衛星攻撃手法を,偵察から影響まで分類する手法を提案する。
論文 参考訳(メタデータ) (2023-12-03T09:38:28Z) - Secure and Efficient Federated Learning in LEO Constellations using
Decentralized Key Generation and On-Orbit Model Aggregation [1.4952056744888915]
本稿では、LEO星座向けに設計されたセキュアFLアプローチであるFedSecureを提案する。
FedSecureは、各衛星のデータのプライバシーを、盗聴者、好奇心の強いサーバー、または好奇心の強い衛星に対して保護する。
また、収束の遅れは数日から数時間に劇的に減少するが、85.35%の精度に達する。
論文 参考訳(メタデータ) (2023-09-04T21:36:46Z) - Low-Earth Satellite Orbit Determination Using Deep Convolutional
Networks with Satellite Imagery [0.0]
我々は,地上局との接触をなくす際に,衛星がリアルタイムに撮影した地球の画像に頼ってその軌道を予測できるコンピュータビジョンに基づくアプローチを提案する。
他の研究とは対照的に、画像ベースのデータセットでニューラルネットワークをトレーニングし、ニューラルネットワークが軌道決定におけるデファクト標準よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-20T21:38:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Temporally-Transferable Perturbations: Efficient, One-Shot Adversarial
Attacks for Online Visual Object Trackers [81.90113217334424]
本研究では, オブジェクトテンプレート画像からのみ, 一時移動可能な対人的摂動を生成するフレームワークを提案する。
この摂動はあらゆる検索画像に追加され、事実上何のコストもかからないが、それでもトラッカーを騙すのに成功している。
論文 参考訳(メタデータ) (2020-12-30T15:05:53Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。