論文の概要: PNVC: Towards Practical INR-based Video Compression
- arxiv url: http://arxiv.org/abs/2409.00953v1
- Date: Mon, 2 Sep 2024 05:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:08:59.598485
- Title: PNVC: Towards Practical INR-based Video Compression
- Title(参考訳): PNVC:実践的なINRベースのビデオ圧縮を目指して
- Authors: Ge Gao, Ho Man Kwan, Fan Zhang, David Bull,
- Abstract要約: 自動エンコーダと過度に適合したソリューションを革新的に組み合わせた新しいINRベースのコーディングフレームワークであるPNVCを提案する。
PNVCはHEVC HM 18.0(LD)に対して35%以上のBDレートの節約を実現している。
- 参考スコア(独自算出の注目度): 14.088444622391501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural video compression has recently demonstrated significant potential to compete with conventional video codecs in terms of rate-quality performance. These learned video codecs are however associated with various issues related to decoding complexity (for autoencoder-based methods) and/or system delays (for implicit neural representation (INR) based models), which currently prevent them from being deployed in practical applications. In this paper, targeting a practical neural video codec, we propose a novel INR-based coding framework, PNVC, which innovatively combines autoencoder-based and overfitted solutions. Our approach benefits from several design innovations, including a new structural reparameterization-based architecture, hierarchical quality control, modulation-based entropy modeling, and scale-aware positional embedding. Supporting both low delay (LD) and random access (RA) configurations, PNVC outperforms existing INR-based codecs, achieving nearly 35%+ BD-rate savings against HEVC HM 18.0 (LD) - almost 10% more compared to one of the state-of-the-art INR-based codecs, HiNeRV and 5% more over VTM 20.0 (LD), while maintaining 20+ FPS decoding speeds for 1080p content. This represents an important step forward for INR-based video coding, moving it towards practical deployment. The source code will be available for public evaluation.
- Abstract(参考訳): ニューラルビデオ圧縮は、最近、レート品質のパフォーマンスの観点から、従来のビデオコーデックと競合する大きな可能性を示している。
しかしながら、これらの学習ビデオコーデックは、デコード複雑性(オートエンコーダベースの方法)や/またはシステム遅延(暗黙のニューラル表現(INR)ベースのモデル)に関連する様々な問題と関連付けられており、現在、それらが実用的なアプリケーションにデプロイされることを防いでいる。
本稿では,実用的なニューラルビデオコーデックをターゲットとして,自動エンコーダと過度に適合したソリューションを革新的に組み合わせた,新しいINRベースのコーディングフレームワークであるPNVCを提案する。
我々のアプローチは、新しい構造的再パラメータ化に基づくアーキテクチャ、階層的品質制御、変調に基づくエントロピーモデリング、スケールアウェアな位置埋め込みなど、いくつかの設計革新の恩恵を受けている。
低遅延(LD)とランダムアクセス(RA)の両方をサポートしているため、PNVCは既存のINRベースのコーデックよりも優れており、HEVC HM 18.0(LD)に対して35%以上のBDレートの保存を実現している。
これは、INRベースのビデオコーディングにとって重要な一歩であり、実践的なデプロイメントに向かっている。
ソースコードは公開評価のために利用できる。
関連論文リスト
- NVRC: Neural Video Representation Compression [13.131842990481038]
我々は、新しいINRベースのビデオ圧縮フレームワーク、Neural Video Representation Compression (NVRC)を提案する。
NVRCは初めて、INRベースのビデオをエンドツーエンドで最適化することができる。
実験の結果,NVRCは従来のベンチマークエントロピーよりも優れていた。
論文 参考訳(メタデータ) (2024-09-11T16:57:12Z) - Standard compliant video coding using low complexity, switchable neural wrappers [8.149130379436759]
標準互換性、高性能、低復号化の複雑さを特徴とする新しいフレームワークを提案する。
私たちは、標準的なビデオをラップして、異なる解像度でビデオをエンコードする、共同最適化されたニューラルプリプロセッサとポストプロセッサのセットを使用します。
我々は、異なるアップサンプリング比を処理できる低複雑性のニューラルポストプロセッサアーキテクチャを設計する。
論文 参考訳(メタデータ) (2024-07-10T06:36:45Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - HiNeRV: Video Compression with Hierarchical Encoding-based Neural
Representation [14.088444622391501]
Implicit Representations (INRs) は画像やビデオのコンテントの表現や圧縮に使われてきた。
既存のINRベースの手法は、ビデオ圧縮の最先端技術に匹敵する速度性能を達成できなかった。
軽量層と階層的位置符号化を組み合わせたINRであるHiNeRVを提案する。
論文 参考訳(メタデータ) (2023-06-16T12:59:52Z) - HNeRV: A Hybrid Neural Representation for Videos [56.492309149698606]
暗黙の神経表現は、動画をニューラルネットワークとして保存する。
ビデオ用ハイブリッドニューラル表現法(HNeRV)を提案する。
コンテンツ適応型埋め込みと再設計アーキテクチャにより、HNeRVはビデオレグレッションタスクにおいて暗黙のメソッドよりも優れる。
論文 参考訳(メタデータ) (2023-04-05T17:55:04Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
我々は,学習可能な位置特徴(NVP)を用いて,映像を潜時符号として効果的に再生するニューラル表現の訓練方法を示す。
一般的なUVGベンチマークにおけるNVPの優位性を実証し,先行技術と比較して,NVPは2倍の速度(5分以内)で走行するだけでなく,符号化品質も34.07rightarrow$34.57(PSNR測定値で測定)に上回っている。
論文 参考訳(メタデータ) (2022-10-13T08:15:08Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
我々は,従来のコーデックとニューラルネットワーク(NN)の両方を活用する,従来型ニューラル混合符号化フレームワークを提案する。
このフレームワークは、動画の移動効率の良いセマンティック表現を確実に保持することで最適化される。
8つのデータセットに3つのダウンストリームタスクを備えた低ビットレートビデオ理解ベンチマークを構築し、このアプローチの顕著な優位性を実証した。
論文 参考訳(メタデータ) (2022-02-06T16:29:15Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Neural Video Coding using Multiscale Motion Compensation and
Spatiotemporal Context Model [45.46660511313426]
エンド・ツー・エンドのディープ・ニューラル・ビデオ・コーディング・フレームワーク(NVC)を提案する。
フレーム内画素、フレーム間運動、フレーム間補償残差の相関を利用するために、共同空間および時間的事前集約(PA)を備えた可変オートエンコーダ(VAE)を使用する。
NVCは低遅延因果条件で評価され、H.265/HEVC、H.264/AVC、その他の学習ビデオ圧縮法と比較される。
論文 参考訳(メタデータ) (2020-07-09T06:15:17Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
本稿では、リカレントオートエンコーダ(RAE)とリカレント確率モデル(RPM)を用いたリカレントラーニングビデオ圧縮(RLVC)手法を提案する。
RAEは、ビデオフレーム間の時間的相関を利用するために、エンコーダとデコーダの両方で繰り返しセルを使用する。
提案手法は,PSNRとMS-SSIMの両方の観点から,最先端の学習ビデオ圧縮性能を実現する。
論文 参考訳(メタデータ) (2020-06-24T08:46:33Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
本稿では,予測自動符号化の概念に基づくハイブリッドビデオ圧縮フレームワークであるPredEncoderを提案する。
可変レートブロック符号化方式が論文で提案され,ビットレート比が著しく向上した。
論文 参考訳(メタデータ) (2020-04-08T20:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。