3D Priors-Guided Diffusion for Blind Face Restoration
- URL: http://arxiv.org/abs/2409.00991v2
- Date: Thu, 12 Sep 2024 07:10:41 GMT
- Title: 3D Priors-Guided Diffusion for Blind Face Restoration
- Authors: Xiaobin Lu, Xiaobin Hu, Jun Luo, Ben Zhu, Yaping Ruan, Wenqi Ren,
- Abstract summary: Blind face restoration endeavors to restore a clear face image from a degraded counterpart.
Recent approaches employing Generative Adversarial Networks (GANs) as priors have demonstrated remarkable success.
We propose a novel diffusion-based framework by embedding the 3D facial priors as structure and identity constraints into a denoising diffusion process.
- Score: 30.94188504133298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind face restoration endeavors to restore a clear face image from a degraded counterpart. Recent approaches employing Generative Adversarial Networks (GANs) as priors have demonstrated remarkable success in this field. However, these methods encounter challenges in achieving a balance between realism and fidelity, particularly in complex degradation scenarios. To inherit the exceptional realism generative ability of the diffusion model and also constrained by the identity-aware fidelity, we propose a novel diffusion-based framework by embedding the 3D facial priors as structure and identity constraints into a denoising diffusion process. Specifically, in order to obtain more accurate 3D prior representations, the 3D facial image is reconstructed by a 3D Morphable Model (3DMM) using an initial restored face image that has been processed by a pretrained restoration network. A customized multi-level feature extraction method is employed to exploit both structural and identity information of 3D facial images, which are then mapped into the noise estimation process. In order to enhance the fusion of identity information into the noise estimation, we propose a Time-Aware Fusion Block (TAFB). This module offers a more efficient and adaptive fusion of weights for denoising, considering the dynamic nature of the denoising process in the diffusion model, which involves initial structure refinement followed by texture detail enhancement. Extensive experiments demonstrate that our network performs favorably against state-of-the-art algorithms on synthetic and real-world datasets for blind face restoration. The Code is released on our project page at https://github.com/838143396/3Diffusion.
Related papers
- LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
sparse-view reconstruction is inherently ill-posed and under-constrained.
We introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images.
Our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods.
arXiv Detail & Related papers (2024-09-05T12:09:02Z) - FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models [79.65289816077629]
We present FitDiff, a diffusion-based 3D facial avatar generative model.
Our model accurately generates relightable facial avatars, utilizing an identity embedding extracted from an "in-the-wild" 2D facial image.
Being the first 3D LDM conditioned on face recognition embeddings, FitDiff reconstructs relightable human avatars, that can be used as-is in common rendering engines.
arXiv Detail & Related papers (2023-12-07T17:35:49Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z) - Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo
Collection [65.92058628082322]
Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions.
This paper presents a novel Learning to Aggregate and Personalize framework for unsupervised robust 3D face modeling.
arXiv Detail & Related papers (2021-06-15T03:10:17Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.