論文の概要: SeCo-INR: Semantically Conditioned Implicit Neural Representations for Improved Medical Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2409.01013v1
- Date: Mon, 2 Sep 2024 07:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:49:16.496381
- Title: SeCo-INR: Semantically Conditioned Implicit Neural Representations for Improved Medical Image Super-Resolution
- Title(参考訳): SeCo-INR: 医用画像超解像のための意味的条件付きインシシトニューラル表現
- Authors: Mevan Ekanayake, Zhifeng Chen, Gary Egan, Mehrtash Harandi, Zhaolin Chen,
- Abstract要約: Inlicit Neural Representation (INR) は、信号の連続的な表現を学習する能力により、近年ディープラーニングの分野を進歩させている。
医用画像から局所的な先行情報を用いてINRを条件付ける,Semantically Conditioned INR (SeCo-INR) と呼ばれる新しいフレームワークを提案する。
本フレームワークは、医用画像のセマンティックセグメンテーション特徴の連続表現を学習し、それを用いて画像の各セマンティック領域に対して最適なINRを導出する。
- 参考スコア(独自算出の注目度): 25.078280843551322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit Neural Representations (INRs) have recently advanced the field of deep learning due to their ability to learn continuous representations of signals without the need for large training datasets. Although INR methods have been studied for medical image super-resolution, their adaptability to localized priors in medical images has not been extensively explored. Medical images contain rich anatomical divisions that could provide valuable local prior information to enhance the accuracy and robustness of INRs. In this work, we propose a novel framework, referred to as the Semantically Conditioned INR (SeCo-INR), that conditions an INR using local priors from a medical image, enabling accurate model fitting and interpolation capabilities to achieve super-resolution. Our framework learns a continuous representation of the semantic segmentation features of a medical image and utilizes it to derive the optimal INR for each semantic region of the image. We tested our framework using several medical imaging modalities and achieved higher quantitative scores and more realistic super-resolution outputs compared to state-of-the-art methods.
- Abstract(参考訳): Inlicit Neural Representations (INR)は、大規模なトレーニングデータセットを必要とせずに、信号の連続的な表現を学習する能力のために、最近ディープラーニングの分野を進歩させた。
医用画像の超高分解能化のためにINR法が研究されているが, 医用画像における局所化先行への適応性は広く研究されていない。
医用画像には、INRの精度と堅牢性を高めるために貴重な局所的な事前情報を提供する、豊富な解剖学的分類が含まれている。
本研究では,医療画像から局所的な先行値を用いてINRを条件付けし,高精度なモデルフィッティングと補間機能を実現する,Semantically Conditioned INR (SeCo-INR) と呼ばれる新しいフレームワークを提案する。
本フレームワークは、医用画像のセマンティックセグメンテーション特徴の連続表現を学習し、それを用いて画像の各セマンティック領域に対して最適なINRを導出する。
我々は,いくつかの医用画像モダリティを用いてフレームワークを試験し,最先端の手法と比較して高い定量スコアとよりリアルな超解像出力を得た。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Implicit Neural Representation in Medical Imaging: A Comparative Survey [3.478921293603811]
Inlicit Neural representations (INR) はシーン再構成やコンピュータグラフィックスにおいて強力なパラダイムとして注目されている。
本調査は,医療画像の分野でのINRモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-07-30T06:39:25Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Data-Consistent Local Superresolution for Medical Imaging [5.025654873456756]
フルトモグラフィー画像の再構築後、臨床医は画像のいくつかの重要な部分が十分に明確でないと信じ、これらの領域をより透明にしたいと考えるかもしれない。
単純なアプローチ(推奨されない)では、高解像度画像のグローバルな再構築を行う。
本稿では,関心領域のズームインと精細化をリアルタイムに行うための反復モデルベース再構成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-22T13:18:38Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
GAN(Generative Adversarial Networks)は、現実的だが斬新なサンプルを生成し、実際の画像分布を効果的にカバーする。
この論文は、医師とのコラボレーションにおいて、そのような新しい応用の臨床的意義を提示することを目的とした4つのGANプロジェクトを含んでいる。
論文 参考訳(メタデータ) (2021-06-03T15:08:14Z) - MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution [3.0554209431226624]
単一画像超解像は、1つの低解像度画像から高解像度の出力を得る。
深層学習に基づくSISRアプローチは、医用画像処理において広く議論されている。
医用画像任意スケール超解像(MIASSR)へのアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-22T14:24:25Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。