On encoded quantum gate generation by iterative Lyapunov-based methods
- URL: http://arxiv.org/abs/2409.01153v1
- Date: Mon, 2 Sep 2024 10:41:15 GMT
- Title: On encoded quantum gate generation by iterative Lyapunov-based methods
- Authors: Paulo Sergio Pereira da Silva, Pierre Rouchon,
- Abstract summary: The problem of encoded quantum gate generation is studied in this paper.
The emphReference Input Generation Algorithm (RIGA) is generalized in this work.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of encoded quantum gate generation is studied in this paper. The idea is to consider a quantum system of higher dimension $n$ than the dimension $\bar n$ of the quantum gate to be synthesized. Given two orthonormal subsets $\mathbb{E} = \{e_1, e_2, \ldots, e_{\bar n}\}$ and $\mathbb F = \{f_1, f_2, \ldots, f_{\bar n}\}$ of $\mathbb{C}^n$, the problem of encoded quantum gate generation consists in obtaining an open loop control law defined in an interval $[0, T_f]$ in a way that all initial states $e_i$ are steered to $\exp(\jmath \phi) f_i, i=1,2, \ldots ,\bar n$ up to some desired precision and to some global phase $\phi \in \mathbb{R}$. This problem includes the classical (full) quantum gate generation problem, when $\bar n = n$, the state preparation problem, when $\bar n = 1$, and finally the encoded gate generation when $ 1 < \bar n < n$. Hence, three problems are unified here within a unique common approach. The \emph{Reference Input Generation Algorithm (RIGA)} is generalized in this work for considering the encoded gate generation problem for closed quantum systems. A suitable Lyapunov function is derived from the orthogonal projector on the support of the encoded gate. Three case-studies of physical interest indicate the potential interest of such numerical algorithm: two coupled transmon-qubits, a cavity mode coupled to a transmon-qubit, and a chain of $N$ qubits, including a large dimensional case for which $N=10$.
Related papers
- Incompressibility and spectral gaps of random circuits [2.359282907257055]
reversible and quantum circuits form random walks on the alternating group $mathrmAlt (2n)$ and unitary group $mathrmSU (2n)$, respectively.
We prove that the gap for random reversible circuits is $Omega(n-3)$ for all $tgeq 1$, and the gap for random quantum circuits is $Omega(n-3)$ for $t leq Theta(2n/2)$.
arXiv Detail & Related papers (2024-06-11T17:23:16Z) - Quantum State Learning Implies Circuit Lower Bounds [2.2667044928324747]
We establish connections between state tomography, pseudorandomness, quantum state, circuit lower bounds.
We show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis.
arXiv Detail & Related papers (2024-05-16T16:46:27Z) - Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates [40.56175933029223]
We propose two types of constant-depth constructions for implementing Uniformly Controlled Gates.
We obtain constant-depth circuits for the quantum counterparts of read-only and read-write memory devices.
arXiv Detail & Related papers (2023-08-16T17:54:56Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Optimal (controlled) quantum state preparation and improved unitary
synthesis by quantum circuits with any number of ancillary qubits [20.270300647783003]
Controlled quantum state preparation (CQSP) aims to provide the transformation of $|irangle |0nrangle to |irangle |psi_irangle $ for all $iin 0,1k$ for the given $n$-qubit states.
We construct a quantum circuit for implementing CQSP, with depth $Oleft(n+k+frac2n+kn+k+mright)$ and size $Oleft(2n+kright)$
arXiv Detail & Related papers (2022-02-23T04:19:57Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth and size complexity remain open when ancillary qubits are available.
In this paper, we study efficient constructions of quantum circuits with $m$ ancillary qubits that can prepare $psi_vrangle$ in depth.
Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime.
arXiv Detail & Related papers (2021-08-13T09:47:11Z) - Partially Concatenated Calderbank-Shor-Steane Codes Achieving the
Quantum Gilbert-Varshamov Bound Asymptotically [36.685393265844986]
We construct new families of quantum error correction codes achieving the quantum-Omega-Varshamov boundally.
$mathscrQ$ can be encoded very efficiently by circuits of size $O(N)$ and depth $O(sqrtN)$.
$mathscrQ$ can also be decoded in parallel in $O(sqrtN)$ time by using $O(sqrtN)$ classical processors.
arXiv Detail & Related papers (2021-07-12T03:27:30Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
arXiv Detail & Related papers (2021-02-03T09:20:32Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.