論文の概要: Balancing Performance and Efficiency: A Multimodal Large Language Model Pruning Method based Image Text Interaction
- arxiv url: http://arxiv.org/abs/2409.01162v1
- Date: Mon, 2 Sep 2024 10:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:13:03.189072
- Title: Balancing Performance and Efficiency: A Multimodal Large Language Model Pruning Method based Image Text Interaction
- Title(参考訳): 性能と効率のバランスをとる:画像テキストの相互作用に基づく多モーダル大言語モデルプルーニング法
- Authors: Gaotong Yu, Yi Chen, Jian Xu,
- Abstract要約: マルチモーダル大規模言語モデル(MM-LLM)は多くのマルチモーダルタスクにおいて大きな成功を収めているが、その高い計算コストはさらなる促進と応用を制限している。
MM-LLMの視覚的トークンについて検討し,この問題に対処するための動的プルーニングアルゴリズムを設計した。
提案手法は,平均22%のトークン量を使用する場合,元のトークン量と競合する性能を実現する。
- 参考スコア(独自算出の注目度): 6.467840081978855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multimodal large language models (MM-LLMs) have achieved great success in many multimodal tasks, but their high computational costs limit their further promotion and application. In the MM-LLMs framework, the main computational consumption step is the processing of concatenated text and visual tokens at the LLM layer. The length of the input token for LLM directly affects the overall training and inference efficiency. In response to this issue, we further studied the visual tokens of MM-LLMs. We found that the similarity between visual and CLS tokens in the visual encoder follows a long-tail distribution. In other words, only a few visual tokens are highly similar to CLS tokens. Therefore, we designed a dynamic pruning algorithm to address this issue. Firstly, for different input samples, we search for the inflection point of their visual CLS token similarity curve and use it as the corresponding segmentation point to trim the visual markers. This process mainly reduces the output of the visual encoder to accelerate the model. Then, in the LLM layer, the concatenated visual text tokens are pruned for the second time. During this process, due to the interaction between visual and textual features, visual and textual tokens with low text correlation are further filtered, achieving a balance between efficiency and performance. The results on multiple datasets show that our proposed method can achieve performance that competes with the original performance when using an average of 22% of the original token quantity. Our source code will be made publicly available following acceptance.
- Abstract(参考訳): 近年,多モーダル大規模言語モデル (MM-LLM) は多モーダルタスクにおいて大きな成功を収めている。
MM-LLMsフレームワークでは、LLM層における連結テキストと視覚トークンの処理が主な計算消費ステップである。
LLMの入力トークンの長さは、全体的なトレーニングと推論効率に直接影響を及ぼす。
そこで本研究では,MM-LLMの視覚的トークンについて検討した。
その結果,視覚エンコーダにおける視覚トークンとCLSトークンの類似性は,長いテール分布に従うことがわかった。
言い換えれば、少数の視覚トークンだけがCLSトークンと非常によく似ている。
そこで我々は,この問題に対処する動的プルーニングアルゴリズムを設計した。
まず、異なる入力サンプルに対して、視覚的CLSトークン類似度曲線の屈折点を探索し、対応するセグメンテーション点として使用し、視覚マーカーをトリミングする。
このプロセスは、主に視覚エンコーダの出力を減らし、モデルを加速する。
そして、LLM層において、連結された視覚テキストトークンを2度目のプルーニングを行う。
この過程で、視覚的特徴とテキスト的特徴の相互作用により、テキスト相関の低い視覚的トークンとテキスト的トークンはさらにフィルタリングされ、効率と性能のバランスがとれる。
複数のデータセットから得られた結果から,提案手法は元のトークン量の平均22%を使用する場合,元のトークン量と競合する性能を達成できることが示唆された。
私たちのソースコードは受理後、公開されます。
関連論文リスト
- [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
マルチモーダルLLMのための学習自由適応推論法を提案する。
最小限の設計により,本手法はビデオと画像の両方に応用できる。
同様の計算コストで,本手法は長いビデオ理解において最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-04T11:47:57Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
MLLM(Multimodal Large Language Models)は、入力イメージを視覚トークンとしてエンコードし、それらを言語バックボーンに入力する。
画像解像度が大きくなるにつれて、視覚トークンの数は2次的に増加し、膨大な計算コストがかかる。
本稿では,各層を浅層から深層まで保持する最小限の視覚トークンを求めるために,欲求探索アルゴリズム(G-Search)を提案する。
論文 参考訳(メタデータ) (2024-11-30T18:54:32Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
VLMは、大量の入力トークンを処理するのに必要な計算量が多いため、推論中に高いレイテンシで制約されることが多い。
高いトークン圧縮設定に適したアプローチを構築するために、最初のステップを踏み出します。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
MLLM(Multimodal Large Language Models)は、視覚エンコーダからの視覚トークンをテキストトークンとして扱う。
トークンの数が増加するにつれて、LLMにおける計算の2次スケーリングは効率のボトルネックをもたらす。
本研究では,LLaVAにおけるパラメータと計算パターンの両レベルでの視覚計算の冗長性について検討する。
論文 参考訳(メタデータ) (2024-10-08T16:13:24Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。