論文の概要: Variation of Camera Parameters due to Common Physical Changes in Focal Length and Camera Pose
- arxiv url: http://arxiv.org/abs/2409.01171v1
- Date: Mon, 2 Sep 2024 11:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:01:54.899126
- Title: Variation of Camera Parameters due to Common Physical Changes in Focal Length and Camera Pose
- Title(参考訳): 焦点長とカメラポッドの共通体長変化によるカメラパラメータの変動
- Authors: Hsin-Yi Chen, Chuan-Kai Fu, Jen-Hui Chuang,
- Abstract要約: 既存のキャリブレーション方式は、一般的な物理的変化によるカメラパラメータの変動の一般的な傾向を見出すには不適である。
近年のキャリブレーション法では,焦点距離とカメラポーズの変化による大小の変動を識別できることが実証された。
- 参考スコア(独自算出の注目度): 3.959905439285649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate calibration of camera intrinsic parameters is crucial to various computer vision-based applications in the fields of intelligent systems, autonomous vehicles, etc. However, existing calibration schemes are incompetent for finding general trend of the variation of camera parameters due to common physical changes. In this paper, it is demonstrated that major and minor variations due to changes in focal length and camera pose, respectively, can be identified with a recently proposed calibration method. It is readily observable from the experimental results that the former variations have different trends (directions) of principal point deviation for different types of camera, possibly due to different internal lens configurations, while the latter have very similar trends in the deviation which is most likely due to direction of gravity. Finally, to confirm the validity of such unprecedented findings, 3D to 2D reprojection errors are compared for different methods of camera calibration.
- Abstract(参考訳): カメラ固有のパラメータの正確な校正は、インテリジェントシステムや自動運転車などの分野における様々なコンピュータビジョンベースの応用に不可欠である。
しかし、既存の校正方式は、一般的な物理的変化によるカメラパラメータの変動の一般的な傾向を見出すには不適である。
本稿では,焦点距離とカメラポーズの変化による大小の変動を,最近提案されたキャリブレーション法で同定できることを実証した。
実験結果から、前者は様々なタイプのカメラの主点偏差の傾向(方向)が異なるが、後者は内部レンズの配置が異なるためか、後者は重力方向による偏差に非常によく似た傾向を持つ。
最後に, カメラキャリブレーションの異なる方法において, 3次元から2次元への再投射誤差を比較検討した。
関連論文リスト
- ESC: Evolutionary Stitched Camera Calibration in the Wild [0.15346678870160887]
マルチカメラ環境におけるキャリブレーションエラーの発生源を同定する。
本稿では,このギャップを埋めるために,進化型スタンプカメラキャリブレーションアルゴリズムを提案する。
実生活における多種多様なサッカー場における最先端の手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-19T07:50:13Z) - E-Calib: A Fast, Robust and Accurate Calibration Toolbox for Event Cameras [18.54225086007182]
E-Calibは、イベントカメラの新しい、高速で、堅牢で、正確なキャリブレーションツールボックスである。
提案手法は,様々なイベントカメラモデルに対する様々な厳密な実験で検証される。
論文 参考訳(メタデータ) (2023-06-15T12:16:38Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
カメラキャリブレーションでは、キャプチャされたシーケンスから幾何学的特徴を推測するために、カメラパラメータを推定する。
近年の取り組みでは,手動キャリブレーションの繰り返し作業に代えて,学習ベースのソリューションが活用される可能性が示唆されている。
論文 参考訳(メタデータ) (2023-03-19T04:00:05Z) - Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
画像キャプチャプロセスの変動から生じる幾何シフトに対処する。
我々は、これらのシフトを最小限に抑えるために幾何変換の集合を学習する自己学習アプローチを導入する。
我々は,カメラの視野変化(FoV)と視点変化(視点変化)の2つの異なるシフトについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-01-13T11:55:30Z) - Rethinking Generic Camera Models for Deep Single Image Camera
Calibration to Recover Rotation and Fisheye Distortion [8.877834897951578]
本稿では,様々な歪みに対処可能な汎用カメラモデルを提案する。
提案手法は,市販の魚眼カメラで撮影した2つの大規模データセットと画像に対して,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-25T05:58:23Z) - Modeling dynamic target deformation in camera calibration [2.378428291297534]
ターゲットの移動は、目標の小さな一時的な変形につながり、キャリブレーション結果に重大な誤差をもたらす可能性があることを示す。
本稿では,カメラキャリブレーションにおける動的対象変形を明示的にモデル化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T12:56:15Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
視点と一般化カメラから半一般化ホモグラフィーを推定するための最初の最小解を提案する。
提案した解法は、多くの合成および実世界の実験で実証されたように安定かつ効率的である。
論文 参考訳(メタデータ) (2021-03-11T08:56:24Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
広角画像は、基礎となるピンホールカメラモデルに反する歪みを含む。
これらの歪みを補正することを目的とした画像修正は、これらの問題を解決することができる。
本稿では、異なるアプローチで使用されるカメラモデルについて、詳細な説明と議論を行う。
次に,従来の幾何学に基づく画像修正手法と深層学習法の両方について検討する。
論文 参考訳(メタデータ) (2020-10-30T17:28:40Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z) - Superaccurate Camera Calibration via Inverse Rendering [0.19336815376402716]
逆レンダリングの原理を用いたカメラキャリブレーションの新しい手法を提案する。
検出された特徴点のみに頼らず、内部パラメータの推定と校正対象のポーズを用いて光学的特徴の非フォトリアリスティックな等価性を暗黙的に描画する。
論文 参考訳(メタデータ) (2020-03-20T10:26:16Z) - Redesigning SLAM for Arbitrary Multi-Camera Systems [51.81798192085111]
SLAMシステムにより多くのカメラを追加することで、堅牢性と精度が向上するが、視覚的なフロントエンドの設計は大幅に複雑になる。
本研究では,任意のマルチカメラ装置で動作する適応SLAMシステムを提案する。
これらの修正を応用した最先端の視覚慣性計測装置を試作し, 改良したパイプラインが広い範囲のカメラ装置に適応可能であることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-03-04T11:44:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。