Towards General Industrial Intelligence: A Survey on IIoT-Enhanced Continual Large Models
- URL: http://arxiv.org/abs/2409.01207v1
- Date: Mon, 2 Sep 2024 12:35:59 GMT
- Title: Towards General Industrial Intelligence: A Survey on IIoT-Enhanced Continual Large Models
- Authors: Jiao Chen, Jiayi He, Fangfang Chen, Zuohong Lv, Jianhua Tang, Weihua Li, Zuozhu Liu, Howard H. Yang, Guangjie Han,
- Abstract summary: Transformer-based large models (LMs) have demonstrated impressive capabilities in AI-generated content (AIGC)
This paper surveys the integration of LMs into IIoT-enhanced General Industrial Intelligence (GII)
- Score: 25.16997700703974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, most applications in the Industrial Internet of Things (IIoT) still rely on CNN-based neural networks. Although Transformer-based large models (LMs), including language, vision, and multimodal models, have demonstrated impressive capabilities in AI-generated content (AIGC), their application in industrial domains, such as detection, planning, and control, remains relatively limited. Deploying pre-trained LMs in industrial environments often encounters the challenge of stability and plasticity due to the complexity of tasks, the diversity of data, and the dynamic nature of user demands. To address these challenges, the pre-training and fine-tuning strategy, coupled with continual learning, has proven to be an effective solution, enabling models to adapt to dynamic demands while continuously optimizing their inference and decision-making capabilities. This paper surveys the integration of LMs into IIoT-enhanced General Industrial Intelligence (GII), focusing on two key areas: LMs for GII and LMs on GII. The former focuses on leveraging LMs to provide optimized solutions for industrial application challenges, while the latter investigates continuous optimization of LMs learning and inference capabilities in collaborative scenarios involving industrial devices, edge computing, and cloud computing. This paper provides insights into the future development of GII, aiming to establish a comprehensive theoretical framework and research direction for GII, thereby advancing GII towards a more general and adaptive future.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - Generative AI Application for Building Industry [10.154329382433213]
This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs) in the building industry.
The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
Large language models (LLMs) and foundation models have been recently touted as a game-changer for 6G systems.
This paper presents a comprehensive vision on how to design universal foundation models tailored towards the deployment of artificial intelligence (AI)-native networks.
arXiv Detail & Related papers (2024-01-30T00:21:41Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - ChatGPT-Like Large-Scale Foundation Models for Prognostics and Health
Management: A Survey and Roadmaps [8.62142522782743]
Prognostics and health management (PHM) technology plays a critical role in industrial production and equipment maintenance.
Large-scale foundation models (LSF-Models) such as ChatGPT and DALLE-E marks the entry of AI into a new era of AI-2.0.
This paper systematically expounds on the key components and latest developments of LSF-Models.
arXiv Detail & Related papers (2023-05-10T21:37:44Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
The Industrial Internet of Things (IIoT) offers promising opportunities to transform the operation of industrial systems.
Recently, artificial intelligence (AI) has been widely utilized for realizing intelligent IIoT applications.
Federated Learning (FL) is particularly attractive for intelligent IIoT networks by coordinating multiple IIoT devices and machines to perform AI training at the network edge.
arXiv Detail & Related papers (2021-05-31T01:02:59Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.